Advanced Topics in Geometry E1 (MTH.B505) Hopf-Rinow's theorem

Kotaro Yamada kotaro@math.titech.ac.jp http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology

2023/06/06

Set up

our curise - converted Zhos converted & locally oncurise converted > or curice converted.

Length

Definition Let $\gamma : [a,b] \to M$ be a piecewize C^1 -curve, where [a,b] is a closed interval on \mathbb{R} . The integral

$$\mathcal{L}(\gamma) \underbrace{=}_{a} \int_{a}^{b} |\dot{\gamma}(t)| \, dt$$

is called the <u>length</u> of γ .

Distance

Lemma

 $(\mathcal{C}_{\mathfrak{p}\mathfrak{s}} \neq \emptyset)$ (M C'- path (Whitney) L: Cp.q > Y I > L(1) E R bounded from $= \inf \mathcal{L}(\mathcal{P}, \mathcal{Q}) =: d(\mathcal{P}, \mathcal{Q})$ ([0, M)

The shortest geodesic

Completeness

Defi

$$\gamma_{p,m v}$$
: the geodesic with $\gamma_{p,m v}(0)=$ and $\dot{\gamma}_{p,m v}(0)=$

- $\gamma_{p, \boldsymbol{v}}(t)$ is said to be comprete if it is defined on \mathbb{R} .
- (M,g) is said to be <u>complete</u> if all geodesics are complete.

Example

The open submanifold $M := \mathbb{E}^n \setminus \{\mathbf{0}\}$ of the Euclidean space \mathbb{E}^n is not complete. In fact, let $x \in M$ and $v := -x \in \mathbb{E}^n = T_x M$. Then the geodesic

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) = \boldsymbol{x} + t\boldsymbol{v} = (1-t)\boldsymbol{x}$$

is defined only on $(-\infty, 1)$.

Theorem (Hopf-Rinow's theorem) The following are equivalent: (M,g) is complete. quadratic $(2) \bigoplus M$ such that all geodesics emanating at p are complete. (M,d) is a complete. I Candy sequences converge. Any bounded subset D of M is precompact. \mathbf{D} : empart 5. $\forall p, q \in M, \exists$ the shortest geodesic joining p and q. 6. Any divergent path has infinite length. J: [a, b) -> M: drumpent 4> VK: compact subed of M JER X+ Y((T.b))CM/K

Complete -> 3 shortest path

Exmaple: the Euclidean space

Example

The Euclidean space \mathbb{E}^n is complete. In fact, $\gamma_{x,v}(t) = x + tv$ is defined on \mathbb{R} .

Example: the Shpere

Example

$$S^n := \left\{ oldsymbol{x} \in \mathbb{E}^{n+1} \, ; \, \langle oldsymbol{x}, oldsymbol{x}
angle = 1
ight\}$$

Then for each $oldsymbol{x} \in S^n$ and $oldsymbol{v} \in T_{oldsymbol{x}}S^n$,

shutert. 2 **A** $d^{2}(p,q) = con^{-1} \langle p,q \rangle$

Example: the hyperbolic space

Example

$$H^{n} := \left\{ \boldsymbol{x} = (x^{0}, \dots, x^{n+1}) \in \mathbb{E}_{1}^{n+1}; \langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1, x^{0} > 0 \right\}.$$

Then for each $oldsymbol{x} \in H^n$ and $oldsymbol{v} \in T_{oldsymbol{x}} H^n$,

$$\underbrace{\gamma_{\boldsymbol{x},\boldsymbol{v}}(t)}_{\boldsymbol{p}} := (\cosh vt)\boldsymbol{x} + (\sinh vt)\boldsymbol{v} \qquad \left(v = \langle \boldsymbol{v}, \boldsymbol{v} \rangle^{1/2}, \quad \boldsymbol{v}' := \frac{\boldsymbol{v}}{v}\right).$$

• $\varphi(b', d) = \cos b_{-/} \left(- \langle b, d \rangle \right)$ \mathbf{Q}

Example: de Sitter space

Example

$$S_1^n := \left\{ oldsymbol{x} \in \mathbb{E}_1^{n+1} \, ; \, \langle oldsymbol{x}, oldsymbol{x}
angle = 1
ight\}.$$

Then for each $oldsymbol{x}\in S_1^n$ and $oldsymbol{v}\in T_{oldsymbol{x}}S_1^n$,

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := \begin{cases} (\cos vt)\boldsymbol{x} + (\sin vt)\boldsymbol{v}' & \text{if } \langle v,v\rangle > 0, \\ \boldsymbol{x} + t\boldsymbol{v} & \text{if } \langle v,v\rangle = 0, \\ (\cosh vt)\boldsymbol{x} + (\sinh vt)\boldsymbol{v}' & \text{if } \langle v,v\rangle < 0, \end{cases}$$

where
$$v := |\langle v, v \rangle|^{1/2}$$
, $v' := \frac{v}{v}$.
(emplite lareition marfold.)

Advanced Topics in Geometry F1 (MTH.B506) @M-143B (H119B)

- June 13. 1. Linear Ordinary Differential Equations
- June 20.2. Integrability Condition
- June 27. 3. Differential Forms
- July 04. 4. Curvature
- July 11. 5. Sectional Curvature
- July 18. 6. Riemannian manifolds of constant sectional curvature

July 25. 7. Fundamental Theorem for hypersurface theory