Advanced Topics in Geometry E1 (MTH.B505)

Hopf-Rinow's theorem

Kotaro Yamada

kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology

2023/06/06

Set up

(M,g): a connected Riemannian manifold

Length

Definition

Let $\gamma\colon [a,b]\to M$ be a piecewize $C^1\text{-curve,}$ where [a,b] is a closed interval on $\mathbb R.$ The integral

$$\mathcal{L}(\gamma) := \int_{a}^{b} |\dot{\gamma}(t)| \, dt$$

is called the length of γ .

Distance

Lemma

For points $p, q \in M$, set

$$d(p,q) := \inf\{\mathcal{L}(\gamma) \, ; \, \gamma \in \mathcal{C}_{p,q}\} \colon M \times M \to \mathbb{R},$$

$$\left(\mathcal{C}_{p,q} := \left\{\gamma \colon [a,b] \to M \, ; \, \begin{matrix} \gamma \text{ is a piecewize C^1-curve} \\ \text{with } \gamma(a) = p \text{ and } \gamma(b) = q \end{matrix}\right\}\right)$$

is a distance function on M, that is, it satisfies the axiom

- $d(p,q) \ge 0$ for any $p, q \in M$. The equality holds iff p = q.
- $\bullet \ d(p,q) = d(q,p).$
- $d(p,q) + d(q,r) \ge d(q,r)$

of distance (compatible to the topology of M).

d: the Riemannian distance with respect to g.

The shortest geodesic

Proposition

For p, $q \in M$, a curve $\gamma \in \mathcal{C}_{p,q}$ satisfying $d(p,q) = \mathcal{L}(\gamma)$ is a pregeodesic.

Definition

The geodesic $\gamma \in \mathcal{C}_{p,q}$ satisfying $\mathcal{L}(\gamma) = d(p,q)$ is called the <u>minimizing</u> geodesic or the <u>shortest geodesic</u> joining p and q.

Completeness

 $\gamma_{p, {m v}}$: the geodesic with $\gamma_{p, {m v}}(0) = p$ and $\dot{\gamma}_{p, {m v}}(0) = {m v}$.

Definition

- $\gamma_{p,v}(t)$ is said to be compolete if it is defined on \mathbb{R} .
- ullet (M,g) is said to be complete if all geodesics are complete.

Example

The open submanifold $M:=\mathbb{E}^n\setminus\{\mathbf{0}\}$ of the Euclidean space \mathbb{E}^n is not complete. In fact, let $\boldsymbol{x}\in M$ and $\boldsymbol{v}:=-\boldsymbol{x}\in\mathbb{E}^n=T_{\boldsymbol{x}}M$. Then the geodesic

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) = \boldsymbol{x} + t\boldsymbol{v} = (1-t)\boldsymbol{x}$$

is defined only on $(-\infty, 1)$.

Hopf-Rinow's Theorem

Theorem (Hopf-Rinow's theorem)

The following are equivalent:

- \bullet (M,g) is complete.
- ② $\exists p \in M$ such that all geodesics emanating at p are complete.
- (M,d) is a complete.
- Any bounded subset D of M is precompact.
- **1** Any divergent path has infinite length.

Exmaple: the Euclidean space

Example

The Euclidean space \mathbb{E}^n is complete. In fact, $\gamma_{x,v}(t) = x + tv$ is defined on \mathbb{R} .

Example: the Shpere

Example

$$S^n := \left\{ oldsymbol{x} \in \mathbb{E}^{n+1} \, ; \, \langle oldsymbol{x}, oldsymbol{x}
angle = 1
ight\}$$

Then for each ${\boldsymbol x} \in S^n$ and ${\boldsymbol v} \in T_{\boldsymbol x} S^n$,

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := (\cos vt)\boldsymbol{x} + (\sin vt)\boldsymbol{v}' \qquad \left(v = \langle \boldsymbol{v}, \boldsymbol{v} \rangle^{1/2}, \quad \boldsymbol{v}' := \frac{\boldsymbol{v}}{v}\right).$$

Example: the hyperbolic space

Example

$$H^n := \{ \boldsymbol{x} = (x^0, \dots, x^{n+1}) \in \mathbb{E}_1^{n+1} ; \langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1, x^0 > 0 \}.$$

Then for each ${m x} \in H^n$ and ${m v} \in T_{m x} H^n$,

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := (\cosh vt)\boldsymbol{x} + (\sinh vt)\boldsymbol{v}' \qquad \left(v = \langle \boldsymbol{v}, \boldsymbol{v} \rangle^{1/2}, \quad \boldsymbol{v}' := \frac{\boldsymbol{v}}{v}\right).$$

Example: de Sitter space

Example

$$S_1^n := \left\{ oldsymbol{x} \in \mathbb{E}_1^{n+1} \, ; \, \langle oldsymbol{x}, oldsymbol{x}
angle = 1
ight\}.$$

Then for each ${\boldsymbol x} \in S_1^n$ and ${\boldsymbol v} \in T_{\boldsymbol x} S_1^n$,

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := \begin{cases} (\cos vt)\boldsymbol{x} + (\sin vt)\boldsymbol{v}' & \text{if } \langle v,v\rangle > 0, \\ \boldsymbol{x} + t\boldsymbol{v} & \text{if } \langle v,v\rangle = 0, \\ (\cosh vt)\boldsymbol{x} + (\sinh vt)\boldsymbol{v}' & \text{if } \langle v,v\rangle < 0, \end{cases}$$

where $v:=|\left\langle {m v},{m v} \right\rangle|^{1/2}$, ${m v}':=rac{{m v}}{v}$.

Ads.

Advanced Topics in Geometry F1 (MTH.B506) @M-143B (H119B)

- June 13. 1. Linear Ordinary Differential Equations
- June 20. 2. Integrability Condition
- June 27. 3. Differential Forms
- July 04. 4. Curvature
- July 11. 5. Sectional Curvature
- July 18. 6. Riemannian manifolds of constant sectional curvature
- July 25. 7. Fundamental Theorem for hypersurface theory