1 Inner products

Throughout this section, V denotes an n-dimensional vector space over $\mathbb{R}(n<\infty)$.

Bilinear forms

Definition 1.1. A symmetric bilinear form on the vector space V is a map $q: V \times V \rightarrow \mathbb{R}$ satisfying the following:

- For each fixed $\boldsymbol{x} \in V$, both $q(\boldsymbol{x}, \cdot): V \ni \boldsymbol{y} \mapsto q(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}$ and $q(\cdot, \boldsymbol{x}): V \ni \boldsymbol{y} \mapsto q(\boldsymbol{y}, \boldsymbol{x}) \in \mathbb{R}$ are linear maps, and
- $q(\boldsymbol{x}, \boldsymbol{y})=q(\boldsymbol{y}, \boldsymbol{x})$ holds for $\boldsymbol{x}, \boldsymbol{y} \in V$.

A symmetric bilinear form q is said to be positive definite if $q(\boldsymbol{x}, \boldsymbol{x})>0$ for any $\boldsymbol{x} \in V \backslash\{\mathbf{0}\}$.
Definition 1.2. An inner product on V is a map

$$
\langle,\rangle: V \times V \ni(\boldsymbol{x}, \boldsymbol{y}) \longmapsto\langle\boldsymbol{x}, \boldsymbol{y}\rangle \in \mathbb{R}
$$

which is a positive definite symmetric bilinear form.
Example 1.3. We consider \mathbb{R}^{n} the vector space consisting of n-dimensional column vectors. For an $n \times n$-symmetric matrix $A=\left(a_{i j}\right)$ with real components,

$$
q_{A}: \mathbb{R}^{n} \times \mathbb{R}^{n} \ni(\boldsymbol{x}, \boldsymbol{y}) \longmapsto \boldsymbol{x}^{T} A \boldsymbol{y} \in \mathbb{R} .
$$

is a symmetric bilinear form, here ${ }^{T}$ denotes the transposition.
Conversely, for each symmetric bilinear form q in \mathbb{R}^{n}, there exists a symmetric matrix A such that $q=q_{A}$. In fact, setting $a_{i j}:=q\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right), A=\left(a_{i j}\right)$ satisfies $q=q_{A}$, where $\left[\boldsymbol{e}_{j}\right]$ is the canonical basis of \mathbb{R}^{n}.

Definition 1.4. Let $(V,\langle\rangle$,$) be an n$-dimensional \mathbb{R}-vector space with inner product \langle,$\rangle . An$ orthonormal basis of $(V,\langle\rangle$,$) is an n$-tuple $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ of elements of V satisfying

$$
\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\delta_{i j}=\left\{\begin{array}{ll}
1 & (i=j) \\
0 & (i \neq j)
\end{array} .\right.
$$

Proposition 1.5. (1) An orthonormal basis of $(V,\langle\rangle$,$) is a basis of V$.
(2) For two orthonormal bases $\left[\boldsymbol{e}_{j}\right]$ and $\left[\boldsymbol{f}_{j}\right]$, there exists an orthogonal matrix P with

$$
\left[\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{n}\right]=\left[e_{1}, \ldots, \boldsymbol{e}_{n}\right] P .
$$

Proof. If $\mathbf{0}=x^{1} \boldsymbol{e}_{1}+\cdots+x^{n} \boldsymbol{e}_{n}, x_{j}=\left\langle 0, \boldsymbol{e}_{j}\right\rangle=0$ for $j=1, \ldots, n$. Thus $\left[\boldsymbol{e}_{j}\right]$ is linearly independent. So noticing $\operatorname{dim} V=n$, we have (1).

Now we prove (2). If we set $p_{i j}:=\left\langle\boldsymbol{f}_{i}, \boldsymbol{e}_{j}\right\rangle(i, j=1, \ldots, n)$, we have $\boldsymbol{f}_{i}=p_{i 1} \boldsymbol{e}_{1}+\cdots+p_{i n} \boldsymbol{e}_{n}$, $(i=1, \ldots, n)$, in other words $\left[\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{n}\right]=\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] P$ holds. Moreover, orthogonality of $\left[\boldsymbol{f}_{i}\right]$ and $\left[\boldsymbol{e}_{j}\right]$, it holds that

$$
\delta_{i j}=\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle=\sum_{k=1}^{n} p_{i k} p_{j k}=i j \text { component of } P^{T} P .
$$

Hence P is an orthogonal matrix.
Theorem 1.6. [Existence of an orthonormal basis] For any n-dimensional \mathbb{R}-vector space $(V,\langle\rangle$,$) ,$ an orthonormal basis of exists.
Proof. Gram-Schmidt's orthogonalization.
18. April, 2023.

Dual basis The vector space

$$
V^{*}:=\{\alpha: V \rightarrow \mathbb{R} ; \text { linear }\}
$$

of linear maps from V to \mathbb{R} is called the dual space of V.
Assume the inner product \langle,$\rangle on V$ is given, and take an orthonormal basis $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ with respect to \langle,$\rangle . We set then$

$$
\begin{equation*}
\omega^{j}: V \ni \boldsymbol{x} \longmapsto \omega^{j}(\boldsymbol{x}):=\left\langle\boldsymbol{e}_{j}, \boldsymbol{x}\right\rangle \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

Proposition 1.7. An n-tuple $\left[\omega^{1}, \ldots, \omega^{n}\right]$ in (1.1) is a basis of V^{*}, called the dual basis of $\left[e_{1}, \ldots, e_{n}\right]$.
Proof. Assume $0=a_{1} \omega^{1}+\cdots+a_{n} \omega_{n}$, where $0 \in V^{*}$ is the zero-map. Substituting \boldsymbol{e}_{j} on the both side of it, we have $a_{j}=0$. Hence $\left[\omega^{j}\right]$ is linearly-independent. On the other hand, for an arbitrary $\alpha \in V^{*}$, we set $a_{j}:=\alpha\left(\boldsymbol{e}_{j}\right)(j=1, \ldots, n)$. Then $a_{1} \omega^{1}+\cdots+a_{n} \omega^{n}=\alpha$, and hence V^{*} is spanned by $\left[\omega^{j}\right]$.

Definition 1.8. For $\alpha, \beta \in V^{*}$, a symmetric bilinear form

$$
\left.\alpha \beta: V \times V \ni(\boldsymbol{x}, \boldsymbol{y}) \mapsto \frac{1}{2}(\alpha \boldsymbol{x}) \beta(\boldsymbol{y})+\alpha \boldsymbol{y}\right) \beta(\boldsymbol{x})
$$

is called the symmetric product of α and β. In particular, when $\beta=\alpha$, we denote $\alpha \alpha$ by α^{2} for simplicity.

Proposition 1.9. Let $(V,\langle\rangle$,$) be an n-dimensional vector space V$ with inner product \langle,$\rangle . Take$ an orthonormal basis $\left[\boldsymbol{e}_{j}\right]$ and its dual basis $\left[\omega^{j}\right]$. Then

$$
\langle,\rangle=\left(\omega^{1}\right)^{2}+\cdots+\left(\omega^{n}\right)^{2}
$$

Proof. Let $\boldsymbol{x}, \boldsymbol{y} \in V$. Then

$$
\boldsymbol{x}=\sum_{i=1}^{n}\left\langle\boldsymbol{x}, \boldsymbol{e}_{i}\right\rangle \boldsymbol{e}_{i}=\sum_{i=1}^{n} \omega^{i}(\boldsymbol{x}) \boldsymbol{e}_{i}, \quad \text { and } \quad \boldsymbol{y}==\sum_{j=1}^{n} \omega^{j}(\boldsymbol{y}) \boldsymbol{e}_{j}
$$

holds. Thus,

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\sum_{i, j=1^{n}} \omega^{i}(\boldsymbol{x}) \omega^{j}(\boldsymbol{y})\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\sum_{i=1}^{n} \omega^{i}(\boldsymbol{x}) \omega^{i}(\boldsymbol{y})=\sum_{i=1}^{n}\left(\omega^{i}\right)^{2}(\boldsymbol{x}, \boldsymbol{y})
$$

The Euclidean vector space Throughout this lecture, we consider \mathbb{R}^{n} as a set of n-dimensional column vector. We set

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle:=\boldsymbol{x}^{T} \boldsymbol{y}=\sum_{j=1}^{n} x^{j} y^{j}, \quad\left(\boldsymbol{x}=\left(x^{1}, \ldots, x^{n}\right)^{T}, \boldsymbol{y}=\left(y^{1}, \ldots, y^{n}\right)^{T}\right)
$$

Then \langle,$\rangle is an inner product, which is called the canonical inner product.$
Definition 1.10. A pair $\mathbb{E}^{n}:=\left(\mathbb{R}^{n},\langle\rangle,\right)$ is called the Euclidean vector space.
Similarly, we consider \mathbb{R}^{n+1}, and set

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{L}:=-x^{0} y^{0}+\sum_{j=1}^{n} x^{j} y^{j}\left(\boldsymbol{x}=\left(x^{0}, x^{1}, \ldots, x^{n}\right)^{T}, \boldsymbol{y}=\left(y^{0}, y^{1}, \ldots, y^{n}\right)^{T}\right)
$$

and call it the canonical Lorentz-Minkowski inner product.
Definition 1.11. A pair $\mathbb{L}^{n+1}:=\left(\mathbb{R}^{n+1},\langle,\rangle_{L}\right)$ is called the Lorentz-Minkowski vector space.

Appendix: A Review of Undergraduate Linear Algebra.

Definition 1.12. - A square matrix P of real components is said to be an orthogonal matrix if $P^{T} P=P P^{T}=I$ holds, where P^{T} denotes the transposition of P and I is the identity matrix.

- A square matrix $A=\left(a_{i j}\right)$ is said to be (real) symmetric matrix if $A^{T}=A$, which is equivalent to that $a_{i j}=a_{j i}$, holds.

Fact 1.13. - The eigenvalues of a real symmetric matrix are real numbers, and the dimension of the corresponding eigenspace coincides with the multiplicity of the eigenvalue.

- Real symmetric matrices can be diagonalized by orthogonal matrices. In other words, for each real symmetric matrix A, there exists an orthogonal matrix P satisfying

$$
P^{-1} A P=P^{T} A P=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right),
$$

where $\operatorname{diag}(\ldots)$ denotes the diagonal matrix with diagonal components "... ". In particular, $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ are the eigenvalues of A counted with their multiplicity.

Exercises

1-1 Let \langle,$\rangle be an inner product of \mathbb{R}^{2}$ defined by

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle:=\boldsymbol{x}^{T} A \boldsymbol{y} \quad A=\left(\begin{array}{cc}
1 & a \\
a & 1
\end{array}\right),
$$

where a is a real number with $|a|<1$.

- Find an orthonormal basis $\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ with respect to \langle,$\rangle .$
- Find row vectors $\hat{\omega}^{j}(j=1,2)$ such that the dual basis $\left[\omega^{j}\right]$ of $\left[\boldsymbol{e}_{j}\right]$ is expressed as

$$
\omega^{j}(\boldsymbol{x})=\hat{\omega}^{j} \boldsymbol{x} \quad(j=1,2) .
$$

1-2 Let \mathbb{L}^{3} be the 3-dimensional Lorentz-Minkowski vector space, and fix $\boldsymbol{x} \in \mathbb{L}^{3}$ with $\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{L}=$ -1 . Take the "orthogonal complement"

$$
W:=\boldsymbol{x}^{\perp}=\left\{\boldsymbol{y} \in \mathbb{L}^{3} ;\langle\boldsymbol{x}, \boldsymbol{y}\rangle\right\}
$$

- Show that W is an 2-dimensional linear subspace of \mathbb{L}^{3}.
- Show that the restriction of \langle,\rangle_{L} to $W \times W$ is a (positive definite) inner product of W.

