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1 Inner products

Throughout this section, V denotes an n-dimensional vector space over R (n < ∞).

Bilinear forms
Definition 1.1. A symmetric bilinear form on the vector space V is a map q : V ×V → R satisfying
the following:

• For each fixed x ∈ V , both q(x, ·) : V 3 y 7→ q(x,y) ∈ R and q(·,x) : V 3 y 7→ q(y,x) ∈ R
are linear maps, and

• q(x,y) = q(y,x) holds for x, y ∈ V .

A symmetric bilinear form q is said to be positive definite if q(x,x) > 0 for any x ∈ V \ {0}.

Definition 1.2. An inner product on V is a map

〈 , 〉 : V × V 3 (x,y) 7−→ 〈x,y〉 ∈ R

which is a positive definite symmetric bilinear form.

Example 1.3. We consider Rn the vector space consisting of n-dimensional column vectors. For
an n× n-symmetric matrix A = (aij) with real components,

qA : Rn × Rn 3 (x,y) 7−→ xTAy ∈ R.

is a symmetric bilinear form, here T denotes the transposition.
Conversely, for each symmetric bilinear form q in Rn, there exists a symmetric matrix A such

that q = qA. In fact, setting aij := q(ei, ej), A = (aij) satisfies q = qA, where [ej ] is the canonical
basis of Rn.

Definition 1.4. Let (V, 〈 , 〉) be an n-dimensional R-vector space with inner product 〈 , 〉. An
orthonormal basis of (V, 〈 , 〉) is an n-tuple [e1, . . . , en] of elements of V satisfying

〈ei, ej〉 = δij =

{
1 (i = j)

0 (i 6= j)
.

Proposition 1.5. (1) An orthonormal basis of (V, 〈 , 〉) is a basis of V .

(2) For two orthonormal bases [ej ] and [f j ], there exists an orthogonal matrix P with

[f1, . . . ,fn] = [e1, . . . , en]P.

Proof. If 0 = x1e1+ · · ·+xnen, xj = 〈0, ej〉 = 0 for j = 1, . . . , n. Thus [ej ] is linearly independent.
So noticing dimV = n, we have (1).

Now we prove (2). If we set pij := 〈f i, ej〉 (i, j = 1, . . . , n), we have f i = pi1e1 + · · ·+ pinen,
(i = 1, . . . , n), in other words [f1, . . . ,fn] = [e1, . . . , en]P holds. Moreover, orthogonality of [f i]
and [ej ], it holds that

δij =
〈
f i,f j

〉
=

n∑
k=1

pikpjk = ij component of PTP .

Hence P is an orthogonal matrix.

Theorem 1.6. [Existence of an orthonormal basis] For any n-dimensional R-vector space (V, 〈 , 〉),
an orthonormal basis of exists.

Proof. Gram-Schmidt’s orthogonalization.
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Dual basis The vector space

V ∗ := {α : V → R ; linear}

of linear maps from V to R is called the dual space of V .
Assume the inner product 〈 , 〉 on V is given, and take an orthonormal basis [e1, . . . , en] with

respect to 〈 , 〉. We set then

(1.1) ωj : V 3 x 7−→ ωj(x) := 〈ej ,x〉 ∈ R.

Proposition 1.7. An n-tuple [ω1, . . . , ωn] in (1.1) is a basis of V ∗, called the dual basis of
[e1, . . . , en].

Proof. Assume 0 = a1ω
1 + · · ·+ anωn, where 0 ∈ V ∗ is the zero-map. Substituting ej on the both

side of it, we have aj = 0. Hence [ωj ] is linearly-independent. On the other hand, for an arbitrary
α ∈ V ∗, we set aj := α(ej) (j = 1, . . . , n). Then a1ω

1 + · · ·+ anω
n = α, and hence V ∗ is spanned

by [ωj ].

Definition 1.8. For α, β ∈ V ∗, a symmetric bilinear form

αβ : V × V 3 (x,y) 7→ 1

2
(αx)β(y) + αy)β(x)

is called the symmetric product of α and β. In particular, when β = α, we denote αα by α2 for
simplicity.

Proposition 1.9. Let (V, 〈 , 〉) be an n-dimensional vector space V with inner product 〈 , 〉. Take
an orthonormal basis [ej ] and its dual basis [ωj ]. Then

〈 , 〉 = (ω1)2 + · · ·+ (ωn)2.

Proof. Let x, y ∈ V . Then

x =

n∑
i=1

〈x, ei〉 ei =
n∑

i=1

ωi(x)ei, and y ==

n∑
j=1

ωj(y)ej

holds. Thus,

〈x,y〉 =
∑

i,j=1n

ωi(x)ωj(y) 〈ei, ej〉 =
n∑

i=1

ωi(x)ωi(y) =

n∑
i=1

(ωi)2(x,y).

The Euclidean vector space Throughout this lecture, we consider Rn as a set of n-dimensional
column vector. We set

〈x,y〉 := xTy =

n∑
j=1

xjyj , (x = (x1, . . . , xn)T ,y = (y1, . . . , yn)T ).

Then 〈 , 〉 is an inner product, which is called the canonical inner product.

Definition 1.10. A pair En := (Rn, 〈 , 〉) is called the Euclidean vector space.

Similarly, we consider Rn+1, and set

〈x,y〉L := −x0y0 +

n∑
j=1

xjyj(x = (x0, x1, . . . , xn)T ,y = (y0, y1, . . . , yn)T ),

and call it the canonical Lorentz-Minkowski inner product.

Definition 1.11. A pair Ln+1 := (Rn+1, 〈 , 〉L) is called the Lorentz-Minkowski vector space.
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Appendix: A Review of Undergraduate Linear Algebra.

Definition 1.12. • A square matrix P of real components is said to be an orthogonal matrix
if PTP = PPT = I holds, where PT denotes the transposition of P and I is the identity
matrix.

• A square matrix A = (aij) is said to be (real) symmetric matrix if AT = A, which is equivalent
to that aij = aji, holds.

Fact 1.13. • The eigenvalues of a real symmetric matrix are real numbers, and the dimension
of the corresponding eigenspace coincides with the multiplicity of the eigenvalue.

• Real symmetric matrices can be diagonalized by orthogonal matrices. In other words, for each
real symmetric matrix A, there exists an orthogonal matrix P satisfying

P−1AP = PTAP = diag(λ1, . . . , λn),

where diag(. . . ) denotes the diagonal matrix with diagonal components “. . . ”. In particular,
{λ1, . . . , λn} are the eigenvalues of A counted with their multiplicity.
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Exercises

1-1 Let 〈 , 〉 be an inner product of R2 defined by

〈x,y〉 := xTAy A =

(
1 a
a 1

)
,

where a is a real number with |a| < 1.

• Find an orthonormal basis [e1, e2] with respect to 〈 , 〉.
• Find row vectors ω̂j (j = 1, 2) such that the dual basis [ωj ] of [ej ] is expressed as

ωj(x) = ω̂jx (j = 1, 2).

1-2 Let L3 be the 3-dimensional Lorentz-Minkowski vector space, and fix x ∈ L3 with 〈x,x〉L =
−1. Take the “orthogonal complement”

W := x⊥ = {y ∈ L3 ; 〈x,y〉}.

• Show that W is an 2-dimensional linear subspace of L3.
• Show that the restriction of 〈 , 〉L to W × W is a (positive definite) inner product of

W .


