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2 Riemannian manifolds
Manifolds

Definition 2.1. Let M be a topological space, and fix a positive integer n. A pair (U, ¢) of an
open set U C M and ¢: U — R” is said to be an (n-dimensional) chart or a local coordinate
system, if ¢ is homeomorphism of U to ¢(U). Two charts (U, ) and (V, ) are said to be adapted
fUNV=0orpotp i RP Dp(UNV) = U NV)CR"is a diffeomorphism.

Example 2.2. A pair (R",id) is a chart of R™, where id is the identity map.
The polar coordinate system (U, o) as in Example 2.29 is an adapted chart with (R?,id).

Definition 2.3. An n-dimensional smooth manifold !, or simply manifold is a Housdorff topolog-
ical space M with second axiom of countability, endowed with a family A := {(Ux,¢x); A € A} of
n-dimensional charts which are mutually adapted, called the atlas, 2satisfying Uye Uy = M.

Example 2.4. For each positive integer n, R™ is an n-manifold with atlas A := {(R",id)}, which
is called the n-dimensional affine space.

Tangent space Let M be an n-dimensional manifold with atlas A. A function f: M — R is
said to be smooth if fop~t: R® D p(U) — R is smooth for any chart in A. A map f: M — RF
is said to be smooth if all components of f are all smooth function on M.

Fact 2.5. A function f: M — R is smooth if for each point p € M, there exists a chart (U,¢) € A
with p € U and f o ¢ is smooth.

Fact 2.6. The set F(M) of smooth functions on M can be considered as an algebra over R by
natural addition and multiplication.

For a chart (U, ¢) € A, we write ¢ : U 2 ¢ — ¢(q) = (z'(q),...,2"(q)) € R™. Thenzi: U — R
is a smooth function for each j = 1,...,n. Such &7’s are called the coordinate function with respect
to the chart. . If we fix o = (z%,...,2"), we write fop~1(al,... 2") by f(z!,...,2"), for a sake
of simplicity.

Definition 2.7. Fix a point p € M. A tangent vector of M at p is an R-linear map X,,: F(M) — R
satisfying the “Leibniz rule”: (X,)(fg) = f(p)(Xp)(g9) +9(p)X,p(f). We denote by T, M the vector
space consisting of the tangent vectors at p, and call the tangent space of M at p.

Fact 2.8. Fiz a chart (U, = (z',...,a™)) containing p. Then (%)p cF(M)> f— %(p) eR
is an element of T,M. Moreover, [(%)p ey (a%)p] is a basis of T,M. In particular T,M is

an n-dimensional vector space.

Let M be another manifold of dimension m. A map f: M — M is said to be smooth if Pof
is smooth for an arbitrary chart (V,4) of M. In particular, a map v: I — M defined on an open
interval I C R is a smooth curve if for each tg € I, ¢ o~y is a smooth map on a neighborhood of ¢,
into R™, where (U, ) is a chart containing ~(%o).

Fact 2.9. For a smooth curve y(t) on M with v(0), F(M) > f +— 4 fo~(0) €R is an element of
T, M, denoted by 4(0). Conversely, any X, € T,M, there exists a smooth curve v(t) with v(0) = p,
such that 4(0) = X,. In this sense, X,, can be interpreted as a directional derivative.

25. April, 2023.
1The word “smooth” is used as a synonym of “of class C°°” in this lecture.
2Usually the atlas A of a given manifold M is assumed to be mazimal, that is, any chart (U, ) adapted with
arbitrary chart in A is an element of A.
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Example 2.10. Let R™ be an n-dimensional affine space as in Example 2.4. Then F(R") is the
set of C*°-functions of n-variables. A directional derivative of f at p in the direction X € R™
as %|t:0 f(p + tX) is identified with an element of T,R™. Thus, T,R" is identified R" itself
(considered as a vector space).

Definition 2.11. The disjoint sum TM := Upep T, M is called the tangent bundle of M. Define
the projection m: TM 3 X — w(X) € M, where p = w(X) is the unique point on M such that X €
T,M. For each chart (U, = (z1,...,2")) of M, set : 77 1(U) 2 X  (p(7(X)),X!,...,X") €
R?", where X =Y X7(0/027)(x). Then a structure of 2n-manifold on T'M such that (1) 7 is a
smooth map (U, P) is an adapted chart for each chart (U, ¢) on M.

Example 2.12. Since T,R" is identified with R” (Example 2.10), the tangent bundle of the affine
space R™ is the product R™ x R™.

Definition 2.13. A (smooth) vector field on M is a smooth map X : M — TM satisfying mo X =
idps, where idy; is the identity map of M.

Example 2.14. Identifying T,R" with R", a vector field of an affine space R" is regarded as a
smooth map X: R" — R”.

We denote by X(M) the set of vector fields on M. For a function f € F(M) and a vector field
X € X(M), the (pointwise) scalar multiplication fX is also a vector field on M. Thus, X(M) has
a structure of F(M)-module.

Submanifolds Let M be an n-manifold. A smooth map f: M — RF is of rank r at p € M if
there exists a chart (U, ) on M containing p such that the Jacobian matrix of f o p~! at o(p)
is of rank r. In particular, a map f is said to be an immersion if it is of rank n = dim M for all
pe M.

Example 2.15. Let M = (—m,7) x R and set
f: M > (u,v) — (sechv cosu, sechvsinu, v — tanhv)? € R3.
Then f is of rank 2 if v # 0, and of rank 1 where v = 0.

Definition 2.16. A subset M of R* (endowed with the topology induced to the canonical topology
of R¥) is called a submanifold of R* if there exists a structure of manifold on M such that the
inclusion map M is an immersion. 3.

Example 2.17. A open subset U C R¥ is a k-dimensional submanifold of R¥.

Fact 2.18 (Implicit Function Theorem). Let F': R"*" — R" be a smooth map, where n and r are
positive numbers, and assume M = F~1(0) = {p € R**"; F(p) = 0} is not empty. Then M is
an n-dimensional submanifold of R*™" provided F is of rank r on M. In this case, the tangent
space TyM (C R"" = T,R™") can be identified as the kernel of the Jacobian matriz dF(p) of F
at p.
Example 2.19 (Spheres). Let k be a positive number and set F': R**! — R by
: 1 1
Fl@) = F(a’,....a") = (35 = 0"@))?) = - = (@) — .

where ( , ) is the canonical inner product of R"*t = E"*1. Then dF = 2(zY,...,2") vanishes if
and only if £ = 0 where F(0) = —1/k # 0. Hence S™(k) := F~1(0) is n-dimensional submanifold
of R"*1 which is the n-dimensional sphere.The tangent space of S™(k) at x is

TxS"(k) = 2+ = {v e R"™!; (x,v) = 0}.

3More generally, a notion of sabmanifolds in a manifold M , because the rank of f: M — M can be defined by
using coordinate function on M.
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Thus, the tangent bundle is expressed as a submanifold of R2(?*+1) ag
TS (k) = {(z,v) € R" x R"; (. a) = 1/k, (@, v) = 0} ¢ R" x R"F! = R2(+1),
Example 2.20. Consider the Lorentz-Minkowski inner product (, ), on R = L""! and set
Fr(®) = (@, 2), — g,

where 7 is a real constant. Then M, := Fq’l(O) is a submanifold of R™*! if ¢ # 0, and the tangent
space of M, at x is
TeM, =z = {v e R""; (z,v), =0}.

When ¢ < 0, z = (2°,...,2™)T € M, satisfies [z°] = 1/,/g. Thus M, is not connected. We
denote the connected component as

H"(k) :={(=",..." YT e M,; 2° >0}  (k=1/q).
When ¢ > 0 M, := S} !(k)) (k = 1/q)is connected submanifold.
When g = 0, My is called the cone or light cone which has a singularity at 0.

Riemannian manifolds

Definition 2.21. A Riemannian metric g on an n-manifold M is a correspondence p — g, of p
to an inner product g, of T, M, which satisfies the smoothness condition, that is,

9g(X,)Y): M >p— g,(Xp,yp) €ER
is a smooth function for each pair of sooth vector fields (X,Y).

Example 2.22. [the Euclidean space| Identifying T,R™ with R", the Euclidean inner product ( , )
on R™ induces a Riemannian metric of R”. E" := (R", (, )) is called the Fuclidean space.

Example 2.23. Let M be an n-dimensional submanifold of E**". Since the restriction of the
inner product ( , ) of TxE"t! = E"*! to the tangent space T M C E™*! is positive definite, it
defines a Riemannian metric of M. Such a metric is called the induced metric from E"+7.

Example 2.24. [the sphere] The sphere S™(k) C R™™! of curvature k is a submanifold of the
Euclidean space with induced metric from E?*1.

The hyperbolic space Let H"(k) (k < 0) be as in Example 2.20. For each position vector
x € H"(k) € R"! e := x/Vk satisfies (e,e) = —1. Then the restriction of the Lorentz-
Minkowski inner product {, ), to the tangent space Tx H"(k) = x* = e’ is positive definite,
as seen in Exercise 1-2. Thus, (, ), induces a Riemannian metric on H"(k). The Riemannian

manifold obtained in this way is called the hyperbolic space of curvature k.

Appendix: Diffeomorphisms

Definition 2.25. Let U and V be open subsets of R™. A diffeomorphism from U to V is a bijection
©: U —V of class O whose inverse ¢~1: V — U is also of class C*°.

Example 2.26. « Amap ¢: RD (—=%,%) 52 — tana € R is a diffeomorphism.

o+ A bijection ¥: R 3 2 +— 2 € R is not a diffeomorphism, because ¢~*(y) = ¥y is not
differentiable at y = 0.
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Theorem 2.27. Let ¢: U — R"™ be a C* map defined on an open subset U of R", and write
(et . x™) = (yi(at, .. 2™, y™(at, . a™)). If the Jacobian J, = det(g%i)j?k:l,_m does
not vanish at p € U, there exists a neighborhood V' (C U) of p such that ¢|,: V — ¢(V) is a
diffeomorphism.

Corollary 2.28. Let U and V be open sets of R™. A C*-bijection ¢: U — V is a diffeomorphism
if its Jacobian J, does not vanish on U.

Example 2.29. Let V := (0, 00) x(—,7) C R? and define ¢): V — R2 by #(r,0) = (r cosf,rsin).
Then v is a bijection from V to U := R?\{(x,0); = < 0}. Since the Jacobian .J,, = r # 0, Corollary
2.28 implies that the map 1 is diffeomorphism. Hence there exists the inverse ¢ :=: U — V C R2,
which is called the polar coordinate system of the plane.

Ezxercises

2-1 Let D := {(u,v) € R*; u? + v? < 1}, and set

f:D> (u,v) — 2(1+u2+vz,2u,2v)€L3.

1—u2—o2
 For each (u,v) € D,

o Show that f is a bijection from D to H3(—1).
+ Compute (f,, fu), (Fu: Fo) and (fo, f).

o For each (u,v) € D, find an orthonormal basis [e;(u,v), ez(u,v)] of Tx H?(—1), where

x = f(u,v).
2-2 Fix an (n+ 1) x (n + 1)-orthogonal matrix A and set
p: S"(k) > x> Az € R™T,

where k is a positive number. Fix & € S™(k) and take a smooth curve v(t) on S™(k) such
that v(0) = z and set v := §(0) € TgS™(k).

o Show that ¢ induces a bijection from S™(k) into S™ (k).

e Show that ¢, v := %’t:o porvy = Av.

o Verify that (v,v) = {(p,v,p,v).



