2 Riemannian manifolds

Manifolds

Definition 2.1. Let M be a topological space, and fix a positive integer n. A pair (U, φ) of an open set $U \subset M$ and $\varphi: U \rightarrow \mathbb{R}^{n}$ is said to be an (n-dimensional) chart or a local coordinate system, if φ is homeomorphism of U to $\varphi(U)$. Two charts (U, φ) and (V, ψ) are said to be adapted if $U \cap V=\emptyset$ or $\varphi \circ \psi^{-1}: \mathbb{R}^{n} \supset \psi(U \cap V) \rightarrow \varphi(U \cap V) \subset \mathbb{R}^{n}$ is a diffeomorphism.

Example 2.2. A pair ($\left.\mathbb{R}^{n}, \mathrm{id}\right)$ is a chart of \mathbb{R}^{n}, where id is the identity map.
The polar coordinate system (U, φ) as in Example 2.29 is an adapted chart with $\left(\mathbb{R}^{2}, \mathrm{id}\right)$.
Definition 2.3. An n-dimensional smooth manifold ${ }^{1}$, or simply manifold is a Housdorff topological space M with second axiom of countability, endowed with a family $\mathcal{A}:=\left\{\left(U_{\lambda}, \varphi_{\lambda}\right) ; \lambda \in \Lambda\right\}$ of n-dimensional charts which are mutually adapted, called the atlas, ${ }^{2}$ satisfying $\cup_{\lambda \in \Lambda} U_{\lambda}=M$.

Example 2.4. For each positive integer n, \mathbb{R}^{n} is an n-manifold with atlas $\mathcal{A}:=\left\{\left(\mathbb{R}^{n}, \mathrm{id}\right)\right\}$, which is called the n-dimensional affine space.

Tangent space Let M be an n-dimensional manifold with atlas \mathcal{A}. A function $f: M \rightarrow \mathbb{R}$ is said to be smooth if $f \circ \varphi^{-1}: \mathbb{R}^{n} \supset \varphi(U) \rightarrow \mathbb{R}$ is smooth for any chart in \mathcal{A}. A map $\boldsymbol{f}: M \rightarrow \mathbb{R}^{k}$ is said to be smooth if all components of \boldsymbol{f} are all smooth function on M.

Fact 2.5. A function $f: M \rightarrow \mathbb{R}$ is smooth if for each point $p \in M$, there exists a chart $(U, \varphi) \in \mathcal{A}$ with $p \in U$ and $f \circ \varphi$ is smooth.

Fact 2.6. The set $\mathcal{F}(M)$ of smooth functions on M can be considered as an algebra over \mathbb{R} by natural addition and multiplication.

For a chart $(U, \varphi) \in \mathcal{A}$, we write $\varphi: U \ni q \mapsto \varphi(q)=\left(x^{1}(q), \ldots, x^{n}(q)\right) \in \mathbb{R}^{n}$. Then $x^{j}: U \rightarrow \mathbb{R}$ is a smooth function for each $j=1, \ldots, n$. Such x^{j} 's are called the coordinate function with respect to the chart. . If we fix $\varphi=\left(x^{1}, \ldots, x^{n}\right)$, we write $f \circ \varphi^{-1}\left(x^{1}, \ldots, x^{n}\right)$ by $f\left(x^{1}, \ldots, x^{n}\right)$, for a sake of simplicity.

Definition 2.7. Fix a point $p \in M$. A tangent vector of M at p is an \mathbb{R}-linear map $X_{p}: \mathcal{F}(M) \rightarrow \mathbb{R}$ satisfying the "Leibniz rule": $\left(X_{p}\right)(f g)=f(p)\left(X_{p}\right)(g)+g(p) X_{p}(f)$. We denote by $T_{p} M$ the vector space consisting of the tangent vectors at p, and call the tangent space of M at p.
Fact 2.8. Fix a chart $\left(U, \varphi=\left(x^{1}, \ldots, x^{n}\right)\right)$ containing p. Then $\left(\frac{\partial}{\partial x^{j}}\right)_{p}: \mathcal{F}(M) \ni f \mapsto \frac{\partial f}{\partial x^{j}}(p) \in \mathbb{R}$ is an element of $T_{p} M$. Moreover, $\left[\left(\frac{\partial}{\partial x^{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial x^{n}}\right)_{p}\right]$ is a basis of $T_{p} M$. In particular $T_{p} M$ is an n-dimensional vector space.

Let \widetilde{M} be another manifold of dimension m. A map $f: M \rightarrow \widetilde{M}$ is said to be smooth if $\psi \circ f$ is smooth for an arbitrary chart (V, ψ) of \widetilde{M}. In particular, a map $\gamma: I \rightarrow M$ defined on an open interval $I \subset \mathbb{R}$ is a smooth curve if for each $t_{0} \in I, \varphi \circ \gamma$ is a smooth map on a neighborhood of t_{0} into \mathbb{R}^{n}, where (U, φ) is a chart containing $\gamma\left(t_{0}\right)$.

Fact 2.9. For a smooth curve $\gamma(t)$ on M with $\gamma(0), \mathcal{F}(M) \ni f \mapsto \frac{d}{d t} f \circ \gamma(0) \in \mathbb{R}$ is an element of $T_{p} M$, denoted by $\dot{\gamma}(0)$. Conversely, any $X_{p} \in T_{p} M$, there exists a smooth curve $\gamma(t)$ with $\gamma(0)=p$, such that $\dot{\gamma}(0)=X_{p}$. In this sense, X_{p} can be interpreted as a directional derivative.

[^0]Example 2.10. Let \mathbb{R}^{n} be an n-dimensional affine space as in Example 2.4. Then $\mathcal{F}\left(\mathbb{R}^{n}\right)$ is the set of C^{∞}-functions of n-variables. A directional derivative of f at p in the direction $X \in \mathbb{R}^{n}$ as $\left.\frac{d}{d t}\right|_{t=0} f(p+t X)$ is identified with an element of $T_{p} \mathbb{R}^{n}$. Thus, $T_{p} \mathbb{R}^{n}$ is identified \mathbb{R}^{n} itself (considered as a vector space).

Definition 2.11. The disjoint sum $T M:=\cup_{p \in M} T_{p} M$ is called the tangent bundle of M. Define the projection π : $T M \ni X \rightarrow \pi(X) \in M$, where $p=\pi(X)$ is the unique point on M such that $X \in$ $T_{p} M$. For each chart $\left(U, \varphi=\left(x^{1}, \ldots, x^{n}\right)\right)$ of M, set $\Phi: \pi^{-1}(U) \ni X \mapsto\left(\varphi(\pi(X)), X^{1}, \ldots, X^{n}\right) \in$ $\mathbb{R}^{2 n}$, where $X=\sum X^{j}\left(\partial / \partial x^{j}\right)_{\pi(X)}$. Then a structure of $2 n$-manifold on $T M$ such that (1) π is a smooth map (U, Φ) is an adapted chart for each chart (U, φ) on M.

Example 2.12. Since $T_{p} \mathbb{R}^{n}$ is identified with \mathbb{R}^{n} (Example 2.10), the tangent bundle of the affine space \mathbb{R}^{n} is the product $\mathbb{R}^{n} \times \mathbb{R}^{n}$.
Definition 2.13. A (smooth) vector field on M is a smooth map $X: M \rightarrow T M$ satisfying $\pi \circ X=$ id_{M}, where id_{M} is the identity map of M.
Example 2.14. Identifying $T_{p} \mathbb{R}^{n}$ with \mathbb{R}^{n}, a vector field of an affine space \mathbb{R}^{n} is regarded as a smooth map $X: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

We denote by $\mathfrak{X}(M)$ the set of vector fields on M. For a function $f \in \mathcal{F}(M)$ and a vector field $X \in \mathfrak{X}(M)$, the (pointwise) scalar multiplication $f X$ is also a vector field on M. Thus, $\mathfrak{X}(M)$ has a structure of $\mathcal{F}(M)$-module.

Submanifolds Let M be an n-manifold. A smooth map $\boldsymbol{f}: M \rightarrow \mathbb{R}^{k}$ is of rank r at $p \in M$ if there exists a chart (U, φ) on M containing p such that the Jacobian matrix of $\boldsymbol{f} \circ \varphi^{-1}$ at $\varphi(p)$ is of rank r. In particular, a map \boldsymbol{f} is said to be an immersion if it is of rank $n=\operatorname{dim} M$ for all $p \in M$.
Example 2.15. Let $M=(-\pi, \pi) \times \mathbb{R}$ and set

$$
\boldsymbol{f}: M \ni(u, v) \longmapsto(\operatorname{sech} v \cos u, \operatorname{sech} v \sin u, v-\tanh v)^{T} \in \mathbb{R}^{3}
$$

Then \boldsymbol{f} is of rank 2 if $v \neq 0$, and of rank 1 where $v=0$.
Definition 2.16. A subset M of \mathbb{R}^{k} (endowed with the topology induced to the canonical topology of \mathbb{R}^{k}) is called a submanifold of \mathbb{R}^{k} if there exists a structure of manifold on M such that the inclusion map M is an immersion. ${ }^{3}$.

Example 2.17. A open subset $U \subset \mathbb{R}^{k}$ is a k-dimensional submanifold of \mathbb{R}^{k}.
Fact 2.18 (Implicit Function Theorem). Let $\boldsymbol{F}: \mathbb{R}^{n+r} \rightarrow \mathbb{R}^{r}$ be a smooth map, where n and r are positive numbers, and assume $M:=\boldsymbol{F}^{-1}(\mathbf{0})=\left\{p \in \mathbb{R}^{n+r} ; \boldsymbol{F}(p)=\mathbf{0}\right\}$ is not empty. Then M is an n-dimensional submanifold of \mathbb{R}^{n+r} provided \boldsymbol{F} is of rank r on M. In this case, the tangent space $T_{p} M\left(\subset \mathbb{R}^{n+r}=T_{p} \mathbb{R}^{n+r}\right)$ can be identified as the kernel of the Jacobian matrix $d \boldsymbol{F}(p)$ of \boldsymbol{F} at p.
Example 2.19 (Spheres). Let k be a positive number and set $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ by

$$
F(\boldsymbol{x}):=F\left(x^{0}, \ldots, x^{n}\right)=\left(\sum j=0^{n}\left(x^{j}\right)^{2}\right)-\frac{1}{k}=\langle\boldsymbol{x}, \boldsymbol{x}\rangle-\frac{1}{k}
$$

where \langle,$\rangle is the canonical inner product of \mathbb{R}^{n+1}=\mathbb{E}^{n+1}$. Then $d F=2\left(x^{0}, \ldots, x^{n}\right)$ vanishes if and only if $\boldsymbol{x}=\mathbf{0}$ where $F(\mathbf{0})=-1 / k \neq 0$. Hence $S^{n}(k):=F^{-1}(0)$ is n-dimensional submanifold of \mathbb{R}^{n+1}, which is the n-dimensional sphere. The tangent space of $S^{n}(k)$ at \boldsymbol{x} is

$$
T_{\boldsymbol{x}} S^{n}(k)=\boldsymbol{x}^{\perp}=\left\{\boldsymbol{v} \in \mathbb{R}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{v}\rangle=0\right\}
$$

[^1]Thus, the tangent bundle is expressed as a submanifold of $\mathbb{R}^{2(n+1)}$ as

$$
T S^{n}(k)=\left\{(\boldsymbol{x}, \boldsymbol{v}) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=1 / k,\langle\boldsymbol{x}, \boldsymbol{v}\rangle=0\right\} \subset \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}=\mathbb{R}^{2(n+1)} .
$$

Example 2.20. Consider the Lorentz-Minkowski inner product \langle,\rangle_{L} on $\mathbb{R}^{n+1}=\mathbb{L}^{n+1}$, and set

$$
F_{r}(\boldsymbol{x}):=\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{L}-q,
$$

where r is a real constant. Then $M_{q}:=F_{q}^{-1}(0)$ is a submanifold of \mathbb{R}^{n+1} if $q \neq 0$, and the tangent space of M_{q} at \boldsymbol{x} is

$$
T_{\boldsymbol{x}} M_{q}=\boldsymbol{x}^{\perp}=\left\{\boldsymbol{v} \in \mathbb{R}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{v}\rangle_{L}=0\right\} .
$$

When $q<0, \boldsymbol{x}=\left(x^{0}, \ldots, x^{n}\right)^{T} \in M_{q}$ satisfies $\left|x^{0}\right| \geqq 1 / \sqrt{q}$. Thus M_{q} is not connected. We denote the connected component as

$$
H^{n}(k):=\left\{\left(x^{0}, \ldots,^{n_{1}}\right)^{T} \in M_{q} ; x^{0}>0\right\} \quad(k=1 / q) .
$$

When $\left.q>0 M_{q}:=S_{1}^{n-1}(k)\right)(k=1 / q)$ is connected submanifold.
When $q=0, M_{0}$ is called the cone or light cone which has a singularity at $\mathbf{0}$.

Riemannian manifolds

Definition 2.21. A Riemannian metric g on an n-manifold M is a correspondence $p \mapsto g_{p}$ of p to an inner product g_{p} of $T_{p} M$, which satisfies the smoothness condition, that is,

$$
g(X, Y): M \ni p \mapsto g_{p}\left(X_{p}, y_{p}\right) \in \mathbb{R}
$$

is a smooth function for each pair of sooth vector fields (X, Y).
Example 2.22. [the Euclidean space] Identifying $T_{p} \mathbb{R}^{n}$ with \mathbb{R}^{n}, the Euclidean inner product \langle, on \mathbb{R}^{n} induces a Riemannian metric of $\mathbb{R}^{n} . \mathbb{E}^{n}:=\left(\mathbb{R}^{n},\langle\rangle,\right)$ is called the Euclidean space.

Example 2.23. Let M be an n-dimensional submanifold of \mathbb{E}^{n+r}. Since the restriction of the inner product \langle,$\rangle of T_{\boldsymbol{x}} \mathbb{E}^{n+1}=\mathbb{E}^{n+1}$ to the tangent space $T_{\boldsymbol{x}} M \subset \mathbb{E}^{n+1}$ is positive definite, it defines a Riemannian metric of M. Such a metric is called the induced metric from \mathbb{E}^{n+r}.

Example 2.24. [the sphere] The sphere $S^{n}(k) \subset \mathbb{R}^{n+1}$ of curvature k is a submanifold of the Euclidean space with induced metric from \mathbb{E}^{n+1}.

The hyperbolic space Let $H^{n}(k)(k<0)$ be as in Example 2.20. For each position vector $\boldsymbol{x} \in H^{n}(k) \in \mathbb{R}^{n+1}, \boldsymbol{e}:=\boldsymbol{x} / \sqrt{k}$ satisfies $\langle\boldsymbol{e}, \boldsymbol{e}\rangle=-1$. Then the restriction of the LorentzMinkowski inner product \langle,\rangle_{L} to the tangent space $T_{\boldsymbol{x}} H^{n}(k)=\boldsymbol{x}^{\perp}=e^{\perp}$ is positive definite, as seen in Exercise 1-2. Thus, \langle,\rangle_{L} induces a Riemannian metric on $H^{n}(k)$. The Riemannian manifold obtained in this way is called the hyperbolic space of curvature k.

Appendix: Diffeomorphisms

Definition 2.25. Let U and V be open subsets of \mathbb{R}^{n}. A diffeomorphism from U to V is a bijection $\varphi: U \rightarrow V$ of class C^{∞} whose inverse $\varphi^{-1}: V \rightarrow U$ is also of class C^{∞}.

Example 2.26. - A map $\varphi: \mathbb{R} \supset\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \ni x \mapsto \tan x \in \mathbb{R}$ is a diffeomorphism.

- A bijection $\psi: \mathbb{R} \ni x \mapsto x^{3} \in \mathbb{R}$ is not a diffeomorphism, because $\psi^{-1}(y)=\sqrt[3]{y}$ is not differentiable at $y=0$.

Theorem 2.27. Let $\varphi: U \rightarrow \mathbb{R}^{n}$ be a C^{∞} map defined on an open subset U of \mathbb{R}^{n}, and write $\varphi\left(x^{1}, \ldots, x^{n}\right)=\left(y^{1}\left(x^{1}, \ldots, x^{n}\right), \ldots, y^{n}\left(x^{1}, \ldots, x^{n}\right)\right)$. If the Jacobian $J_{\varphi}:=\operatorname{det}\left(\frac{\partial y^{j}}{\partial x^{k}}\right)_{j, k=1, \ldots, n}$ does not vanish at $p \in U$, there exists a neighborhood $V(\subset U)$ of p such that $\left.\varphi\right|_{v}: V \rightarrow \varphi(V)$ is a diffeomorphism.

Corollary 2.28. Let U and V be open sets of \mathbb{R}^{n}. A C^{∞}-bijection $\varphi: U \rightarrow V$ is a diffeomorphism if its Jacobian J_{φ} does not vanish on U.

Example 2.29. Let $V:=(0, \infty) \times(-\pi, \pi) \subset \mathbb{R}^{2}$ and define $\psi: V \rightarrow \mathbb{R}^{2}$ by $\psi(r, \theta)=(r \cos \theta, r \sin \theta)$. Then ψ is a bijection from V to $U:=\mathbb{R}^{2} \backslash\{(x, 0) ; x \leqq 0\}$. Since the Jacobian $J_{\psi}=r \neq 0$, Corollary 2.28 implies that the map ψ is diffeomorphism. Hence there exists the inverse $\varphi:=\psi: U \rightarrow V \subset \mathbb{R}^{2}$, which is called the polar coordinate system of the plane.

Exercises

2-1 Let $D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}$, and set

$$
f: D \ni(u, v) \mapsto \frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in \mathbb{L}^{3}
$$

- For each $(u, v) \in D$,
- Show that \boldsymbol{f} is a bijection from D to $H^{3}(-1)$.
- Compute $\left\langle\boldsymbol{f}_{u}, \boldsymbol{f}_{u}\right\rangle,\left\langle\boldsymbol{f}_{u}, \boldsymbol{f}_{v}\right\rangle$ and $\left\langle\boldsymbol{f}_{v}, \boldsymbol{f}_{v}\right\rangle$.
- For each $(u, v) \in D$, find an orthonormal basis $\left[\boldsymbol{e}_{1}(u, v), \boldsymbol{e}_{2}(u, v)\right]$ of $T_{\boldsymbol{x}} H^{3}(-1)$, where $\boldsymbol{x}=\boldsymbol{f}(u, v)$.

2-2 Fix an $(n+1) \times(n+1)$-orthogonal matrix A and set

$$
\boldsymbol{\varphi}: S^{n}(k) \ni \boldsymbol{x} \mapsto A \boldsymbol{x} \in \mathbb{R}^{n+1}
$$

where k is a positive number. Fix $\boldsymbol{x} \in S^{n}(k)$ and take a smooth curve $\gamma(t)$ on $S^{n}(k)$ such that $\gamma(0)=\boldsymbol{x}$ and set $\boldsymbol{v}:=\dot{\gamma}(0) \in T_{\boldsymbol{x}} S^{n}(k)$.

- Show that φ induces a bijection from $S^{n}(k)$ into $S^{n}(k)$.
- Show that $\boldsymbol{\varphi}_{*} \boldsymbol{v}:=\left.\frac{d}{d t}\right|_{t=0} \varphi \circ \gamma=A \boldsymbol{v}$.
- Verify that $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=\left\langle\boldsymbol{\varphi}_{*} \boldsymbol{v}, \boldsymbol{\varphi}_{*} \boldsymbol{v}\right\rangle$.

[^0]: 25. April, 2023.
 ${ }^{1}$ The word "smooth" is used as a synonym of "of class C^{∞} " in this lecture.
 ${ }^{2}$ Usually the atlas \mathcal{A} of a given manifold M is assumed to be maximal, that is, any chart (U, φ) adapted with arbitrary chart in \mathcal{A} is an element of \mathcal{A}.
[^1]: ${ }^{3}$ More generally, a notion of sabmanifolds in a manifold \widetilde{M}, because the rank of $\boldsymbol{f}: M \rightarrow \widetilde{M}$ can be defined by using coordinate function on \widetilde{M}.

