2 Riemannian manifolds

Manifolds

Definition 2.1. Let M be a topological space, and fix a positive integer n. A pair (U, φ) of an open set $U \subset M$ and $\varphi \colon U \to \mathbb{R}^n$ is said to be an (*n*-dimensional) chart or a local coordinate system, if φ is homeomorphism of U to $\varphi(U)$. Two charts (U, φ) and (V, ψ) are said to be adapted if $U \cap V = \emptyset$ or $\varphi \circ \psi^{-1} \colon \mathbb{R}^n \supset \psi(U \cap V) \to \varphi(U \cap V) \subset \mathbb{R}^n$ is a diffeomorphism.

Example 2.2. A pair $(\mathbb{R}^n, \mathrm{id})$ is a chart of \mathbb{R}^n , where id is the identity map.

The polar coordinate system (U, φ) as in Example 2.29 is an adapted chart with $(\mathbb{R}^2, \mathrm{id})$.

Definition 2.3. An *n*-dimensional smooth manifold ¹, or simply manifold is a Housdorff topological space M with second axiom of countability, endowed with a family $\mathcal{A} := \{(U_{\lambda}, \varphi_{\lambda}); \lambda \in \Lambda\}$ of *n*-dimensional charts which are mutually adapted, called the *atlas*, ²satisfying $\cup_{\lambda \in \Lambda} U_{\lambda} = M$.

Example 2.4. For each positive integer n, \mathbb{R}^n is an *n*-manifold with atlas $\mathcal{A} := \{(\mathbb{R}^n, \mathrm{id})\}$, which is called the *n*-dimensional *affine space*.

Tangent space Let M be an n-dimensional manifold with atlas \mathcal{A} . A function $f: M \to \mathbb{R}$ is said to be *smooth* if $f \circ \varphi^{-1}: \mathbb{R}^n \supset \varphi(U) \to \mathbb{R}$ is smooth for any chart in \mathcal{A} . A map $f: M \to \mathbb{R}^k$ is said to be smooth if all components of f are all smooth function on M.

Fact 2.5. A function $f: M \to \mathbb{R}$ is smooth if for each point $p \in M$, there exists a chart $(U, \varphi) \in \mathcal{A}$ with $p \in U$ and $f \circ \varphi$ is smooth.

Fact 2.6. The set $\mathcal{F}(M)$ of smooth functions on M can be considered as an algebra over \mathbb{R} by natural addition and multiplication.

For a chart $(U, \varphi) \in \mathcal{A}$, we write $\varphi : U \ni q \mapsto \varphi(q) = (x^1(q), \dots, x^n(q)) \in \mathbb{R}^n$. Then $x^j : U \to \mathbb{R}$ is a smooth function for each $j = 1, \dots, n$. Such x^j 's are called the *coordinate function* with respect to the chart. If we fix $\varphi = (x^1, \dots, x^n)$, we write $f \circ \varphi^{-1}(x^1, \dots, x^n)$ by $f(x^1, \dots, x^n)$, for a sake of simplicity.

Definition 2.7. Fix a point $p \in M$. A tangent vector of M at p is an \mathbb{R} -linear map $X_p: \mathcal{F}(M) \to \mathbb{R}$ satisfying the "Leibniz rule": $(X_p)(fg) = f(p)(X_p)(g) + g(p)X_p(f)$. We denote by T_pM the vector space consisting of the tangent vectors at p, and call the tangent space of M at p.

Fact 2.8. Fix a chart $(U, \varphi = (x^1, ..., x^n))$ containing p. Then $\left(\frac{\partial}{\partial x^j}\right)_p : \mathcal{F}(M) \ni f \mapsto \frac{\partial f}{\partial x^j}(p) \in \mathbb{R}$ is an element of T_pM . Moreover, $\left[\left(\frac{\partial}{\partial x^1}\right)_p, \ldots, \left(\frac{\partial}{\partial x^n}\right)_p\right]$ is a basis of T_pM . In particular T_pM is an n-dimensional vector space.

Let \widetilde{M} be another manifold of dimension m. A map $f: M \to \widetilde{M}$ is said to be smooth if $\psi \circ f$ is smooth for an arbitrary chart (V, ψ) of \widetilde{M} . In particular, a map $\gamma: I \to M$ defined on an open interval $I \subset \mathbb{R}$ is a smooth curve if for each $t_0 \in I$, $\varphi \circ \gamma$ is a smooth map on a neighborhood of t_0 into \mathbb{R}^n , where (U, φ) is a chart containing $\gamma(t_0)$.

Fact 2.9. For a smooth curve $\gamma(t)$ on M with $\gamma(0)$, $\mathcal{F}(M) \ni f \mapsto \frac{d}{dt} f \circ \gamma(0) \in \mathbb{R}$ is an element of $T_p M$, denoted by $\dot{\gamma}(0)$. Conversely, any $X_p \in T_p M$, there exists a smooth curve $\gamma(t)$ with $\gamma(0) = p$, such that $\dot{\gamma}(0) = X_p$. In this sense, X_p can be interpreted as a directional derivative.

^{25.} April, 2023.

¹The word "smooth" is used as a synonym of "of class C^{∞} " in this lecture.

²Usually the atlas \mathcal{A} of a given manifold M is assumed to be *maximal*, that is, any chart (U, φ) adapted with arbitrary chart in \mathcal{A} is an element of \mathcal{A} .

Example 2.10. Let \mathbb{R}^n be an *n*-dimensional affine space as in Example 2.4. Then $\mathcal{F}(\mathbb{R}^n)$ is the set of C^{∞} -functions of *n*-variables. A *directional derivative* of *f* at *p* in the direction $X \in \mathbb{R}^n$ as $\frac{d}{dt}\Big|_{t=0} f(p+tX)$ is identified with an element of $T_p\mathbb{R}^n$. Thus, $T_p\mathbb{R}^n$ is identified \mathbb{R}^n itself (considered as a vector space).

Definition 2.11. The disjoint sum $TM := \bigcup_{p \in M} T_p M$ is called the *tangent bundle* of M. Define the projection $\pi : TM \ni X \to \pi(X) \in M$, where $p = \pi(X)$ is the unique point on M such that $X \in T_p M$. For each chart $(U, \varphi = (x^1, \ldots, x^n))$ of M, set $\Phi : \pi^{-1}(U) \ni X \mapsto (\varphi(\pi(X)), X^1, \ldots, X^n) \in \mathbb{R}^{2n}$, where $X = \sum X^j (\partial/\partial x^j)_{\pi(X)}$. Then a structure of 2*n*-manifold on TM such that $(1) \pi$ is a smooth map (U, Φ) is an adapted chart for each chart (U, φ) on M.

Example 2.12. Since $T_p \mathbb{R}^n$ is identified with \mathbb{R}^n (Example 2.10), the tangent bundle of the affine space \mathbb{R}^n is the product $\mathbb{R}^n \times \mathbb{R}^n$.

Definition 2.13. A (smooth) vector field on M is a smooth map $X: M \to TM$ satisfying $\pi \circ X = id_M$, where id_M is the identity map of M.

Example 2.14. Identifying $T_p\mathbb{R}^n$ with \mathbb{R}^n , a vector field of an affine space \mathbb{R}^n is regarded as a smooth map $X \colon \mathbb{R}^n \to \mathbb{R}^n$.

We denote by $\mathfrak{X}(M)$ the set of vector fields on M. For a function $f \in \mathcal{F}(M)$ and a vector field $X \in \mathfrak{X}(M)$, the (pointwise) scalar multiplication fX is also a vector field on M. Thus, $\mathfrak{X}(M)$ has a structure of $\mathcal{F}(M)$ -module.

Submanifolds Let M be an n-manifold. A smooth map $\boldsymbol{f} \colon M \to \mathbb{R}^k$ is of rank r at $p \in M$ if there exists a chart (U, φ) on M containing p such that the Jacobian matrix of $\boldsymbol{f} \circ \varphi^{-1}$ at $\varphi(p)$ is of rank r. In particular, a map \boldsymbol{f} is said to be an *immersion* if it is of rank $n = \dim M$ for all $p \in M$.

Example 2.15. Let $M = (-\pi, \pi) \times \mathbb{R}$ and set

 $f: M \ni (u, v) \longmapsto (\operatorname{sech} v \cos u, \operatorname{sech} v \sin u, v - \tanh v)^T \in \mathbb{R}^3.$

Then \boldsymbol{f} is of rank 2 if $v \neq 0$, and of rank 1 where v = 0.

Definition 2.16. A subset M of \mathbb{R}^k (endowed with the topology induced to the canonical topology of \mathbb{R}^k) is called a *submanifold* of \mathbb{R}^k if there exists a structure of manifold on M such that the inclusion map M is an immersion.³.

Example 2.17. A open subset $U \subset \mathbb{R}^k$ is a k-dimensional submanifold of \mathbb{R}^k .

Fact 2.18 (Implicit Function Theorem). Let $\mathbf{F} : \mathbb{R}^{n+r} \to \mathbb{R}^r$ be a smooth map, where n and r are positive numbers, and assume $M := \mathbf{F}^{-1}(\mathbf{0}) = \{p \in \mathbb{R}^{n+r}; \mathbf{F}(p) = \mathbf{0}\}$ is not empty. Then M is an n-dimensional submanifold of \mathbb{R}^{n+r} provided \mathbf{F} is of rank r on M. In this case, the tangent space T_pM ($\subset \mathbb{R}^{n+r} = T_p\mathbb{R}^{n+r}$) can be identified as the kernel of the Jacobian matrix $d\mathbf{F}(p)$ of \mathbf{F} at p.

Example 2.19 (Spheres). Let k be a positive number and set $F : \mathbb{R}^{n+1} \to \mathbb{R}$ by

$$F(\boldsymbol{x}) := F(x^0, \dots, x^n) = \left(\sum j = 0^n (x^j)^2\right) - \frac{1}{k} = \langle \boldsymbol{x}, \boldsymbol{x} \rangle - \frac{1}{k}$$

where \langle , \rangle is the canonical inner product of $\mathbb{R}^{n+1} = \mathbb{E}^{n+1}$. Then $dF = 2(x^0, \ldots, x^n)$ vanishes if and only if $\boldsymbol{x} = \boldsymbol{0}$ where $F(\boldsymbol{0}) = -1/k \neq 0$. Hence $S^n(k) := F^{-1}(0)$ is *n*-dimensional submanifold of \mathbb{R}^{n+1} , which is the *n*-dimensional sphere. The tangent space of $S^n(k)$ at \boldsymbol{x} is

$$T_{\boldsymbol{x}}S^{n}(k) = \boldsymbol{x}^{\perp} = \{ \boldsymbol{v} \in \mathbb{R}^{n+1} ; \langle \boldsymbol{x}, \boldsymbol{v} \rangle = 0 \}.$$

³More generally, a notion of sabmanifolds in a manifold \widetilde{M} , because the rank of $f: M \to \widetilde{M}$ can be defined by using coordinate function on \widetilde{M} .

Thus, the tangent bundle is expressed as a submanifold of $\mathbb{R}^{2(n+1)}$ as

$$TS^{n}(k) = \{(\boldsymbol{x}, \boldsymbol{v}) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}; \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 1/k, \langle \boldsymbol{x}, \boldsymbol{v} \rangle = 0\} \subset \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} = \mathbb{R}^{2(n+1)}.$$

Example 2.20. Consider the Lorentz-Minkowski inner product \langle , \rangle_L on $\mathbb{R}^{n+1} = \mathbb{L}^{n+1}$, and set

$$F_r(\boldsymbol{x}) := \langle \boldsymbol{x}, \boldsymbol{x} \rangle_L - q_s$$

where r is a real constant. Then $M_q := F_q^{-1}(0)$ is a submanifold of \mathbb{R}^{n+1} if $q \neq 0$, and the tangent space of M_q at \boldsymbol{x} is

$$T_{\boldsymbol{x}}M_q = \boldsymbol{x}^{\perp} = \{ \boldsymbol{v} \in \mathbb{R}^{n+1} ; \langle \boldsymbol{x}, \boldsymbol{v} \rangle_L = 0 \}.$$

When q < 0, $\boldsymbol{x} = (x^0, \dots, x^n)^T \in M_q$ satisfies $|x^0| \ge 1/\sqrt{q}$. Thus M_q is not connected. We denote the connected component as

$$H^{n}(k) := \{ (x^{0}, \dots, x^{n_{1}})^{T} \in M_{q} ; x^{0} > 0 \} \qquad (k = 1/q).$$

When q > 0 $M_q := S_1^{n-1}(k)$ (k = 1/q) is connected submanifold.

When q = 0, M_0 is called the *cone* or *light cone* which has a *singularity* at **0**.

Riemannian manifolds

Definition 2.21. A Riemannian metric g on an n-manifold M is a correspondence $p \mapsto g_p$ of p to an inner product g_p of T_pM , which satisfies the smoothness condition, that is,

$$g(X,Y): M \ni p \mapsto g_p(X_p, y_p) \in \mathbb{R}$$

is a smooth function for each pair of sooth vector fields (X, Y).

Example 2.22. [the Euclidean space] Identifying $T_p\mathbb{R}^n$ with \mathbb{R}^n , the Euclidean inner product \langle , \rangle on \mathbb{R}^n induces a Riemannian metric of \mathbb{R}^n . $\mathbb{E}^n := (\mathbb{R}^n, \langle , \rangle)$ is called the *Euclidean space*.

Example 2.23. Let M be an n-dimensional submanifold of \mathbb{E}^{n+r} . Since the restriction of the inner product \langle , \rangle of $T_{\boldsymbol{x}}\mathbb{E}^{n+1} = \mathbb{E}^{n+1}$ to the tangent space $T_{\boldsymbol{x}}M \subset \mathbb{E}^{n+1}$ is positive definite, it defines a Riemannian metric of M. Such a metric is called the *induced metric* from \mathbb{E}^{n+r} .

Example 2.24. [the sphere] The sphere $S^n(k) \subset \mathbb{R}^{n+1}$ of *curvature* k is a submanifold of the Euclidean space with induced metric from \mathbb{E}^{n+1} .

The hyperbolic space Let $H^n(k)$ (k < 0) be as in Example 2.20. For each position vector $\mathbf{x} \in H^n(k) \in \mathbb{R}^{n+1}$, $\mathbf{e} := \mathbf{x}/\sqrt{k}$ satisfies $\langle \mathbf{e}, \mathbf{e} \rangle = -1$. Then the restriction of the Lorentz-Minkowski inner product \langle , \rangle_L to the tangent space $T_{\mathbf{x}}H^n(k) = \mathbf{x}^{\perp} = \mathbf{e}^{\perp}$ is positive definite, as seen in Exercise 1-2. Thus, \langle , \rangle_L induces a Riemannian metric on $H^n(k)$. The Riemannian manifold obtained in this way is called the *hyperbolic space* of curvature k.

Appendix: Diffeomorphisms

Definition 2.25. Let U and V be open subsets of \mathbb{R}^n . A *diffeomorphism* from U to V is a bijection $\varphi: U \to V$ of class C^{∞} whose inverse $\varphi^{-1}: V \to U$ is also of class C^{∞} .

Example 2.26. • A map $\varphi \colon \mathbb{R} \supset \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \ni x \mapsto \tan x \in \mathbb{R}$ is a diffeomorphism.

• A bijection $\psi \colon \mathbb{R} \ni x \mapsto x^3 \in \mathbb{R}$ is not a diffeomorphism, because $\psi^{-1}(y) = \sqrt[3]{y}$ is not differentiable at y = 0.

Theorem 2.27. Let $\varphi: U \to \mathbb{R}^n$ be a C^{∞} map defined on an open subset U of \mathbb{R}^n , and write $\varphi(x^1, \ldots, x^n) = (y^1(x^1, \ldots, x^n), \ldots, y^n(x^1, \ldots, x^n))$. If the Jacobian $J_{\varphi} := \det(\frac{\partial y^j}{\partial x^k})_{j,k=1,\ldots,n}$ does not vanish at $p \in U$, there exists a neighborhood $V \ (\subset U)$ of p such that $\varphi|_v: V \to \varphi(V)$ is a diffeomorphism.

Corollary 2.28. Let U and V be open sets of \mathbb{R}^n . A C^{∞} -bijection $\varphi \colon U \to V$ is a diffeomorphism if its Jacobian J_{φ} does not vanish on U.

Example 2.29. Let $V := (0, \infty) \times (-\pi, \pi) \subset \mathbb{R}^2$ and define $\psi \colon V \to \mathbb{R}^2$ by $\psi(r, \theta) = (r \cos \theta, r \sin \theta)$. Then ψ is a bijection from V to $U := \mathbb{R}^2 \setminus \{(x, 0) ; x \leq 0\}$. Since the Jacobian $J_{\psi} = r \neq 0$, Corollary 2.28 implies that the map ψ is diffeomorphism. Hence there exists the inverse $\varphi := \psi \colon U \to V \subset \mathbb{R}^2$, which is called the *polar coordinate system* of the plane.

Exercises

2-1 Let $D := \{(u, v) \in \mathbb{R}^2 ; u^2 + v^2 < 1\}$, and set

$$f: D \ni (u, v) \mapsto \frac{1}{1 - u^2 - v^2} (1 + u^2 + v^2, 2u, 2v) \in \mathbb{L}^3.$$

- For each $(u, v) \in D$,
- Show that f is a bijection from D to $H^3(-1)$.
- Compute $\langle \boldsymbol{f}_u, \boldsymbol{f}_u \rangle$, $\langle \boldsymbol{f}_u, \boldsymbol{f}_v \rangle$ and $\langle \boldsymbol{f}_v, \boldsymbol{f}_v \rangle$.
- For each $(u, v) \in D$, find an orthonormal basis $[e_1(u, v), e_2(u, v)]$ of $T_x H^3(-1)$, where x = f(u, v).

2-2 Fix an $(n+1) \times (n+1)$ -orthogonal matrix A and set

$$\varphi \colon S^n(k) \ni \boldsymbol{x} \mapsto A \boldsymbol{x} \in \mathbb{R}^{n+1},$$

where k is a positive number. Fix $\boldsymbol{x} \in S^n(k)$ and take a smooth curve $\gamma(t)$ on $S^n(k)$ such that $\gamma(0) = \boldsymbol{x}$ and set $\boldsymbol{v} := \dot{\gamma}(0) \in T_{\boldsymbol{x}}S^n(k)$.

- Show that φ induces a bijection from $S^n(k)$ into $S^n(k)$.
- Show that $\varphi_* v := \frac{d}{dt}\Big|_{t=0} \varphi \circ \gamma = A v.$
- Verify that $\langle \boldsymbol{v}, \boldsymbol{v} \rangle = \langle \boldsymbol{\varphi}_* \boldsymbol{v}, \boldsymbol{\varphi}_* \boldsymbol{v} \rangle$.