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2 Riemannian manifolds

Manifolds

Definition 2.1. Let M be a topological space, and fix a positive integer n. A pair (U,ϕ) of an
open set U ⊂ M and ϕ : U → Rn is said to be an (n-dimensional) chart or a local coordinate
system, if ϕ is homeomorphism of U to ϕ(U). Two charts (U,ϕ) and (V, ψ) are said to be adapted
if U ∩ V = ∅ or ϕ ◦ ψ−1 : Rn ⊃ ψ(U ∩ V ) → ϕ(U ∩ V ) ⊂ Rn is a diffeomorphism.

Example 2.2. A pair (Rn, id) is a chart of Rn, where id is the identity map.
The polar coordinate system (U,ϕ) as in Example 2.29 is an adapted chart with (R2, id).

Definition 2.3. An n-dimensional smooth manifold 1, or simply manifold is a Housdorff topolog-
ical space M with second axiom of countability, endowed with a family A := {(Uλ, ϕλ) ; λ ∈ Λ} of
n-dimensional charts which are mutually adapted, called the atlas, 2satisfying ∪λ∈ΛUλ =M .

Example 2.4. For each positive integer n, Rn is an n-manifold with atlas A := {(Rn, id)}, which
is called the n-dimensional affine space.

Tangent space Let M be an n-dimensional manifold with atlas A. A function f : M → R is
said to be smooth if f ◦ ϕ−1 : Rn ⊃ ϕ(U) → R is smooth for any chart in A. A map f : M → Rk
is said to be smooth if all components of f are all smooth function on M .

Fact 2.5. A function f : M → R is smooth if for each point p ∈M , there exists a chart (U,ϕ) ∈ A
with p ∈ U and f ◦ ϕ is smooth.

Fact 2.6. The set F(M) of smooth functions on M can be considered as an algebra over R by
natural addition and multiplication.

For a chart (U,ϕ) ∈ A, we write ϕ : U 3 q 7→ ϕ(q) =
(
x1(q), . . . , xn(q)

)
∈ Rn. Then xj : U → R

is a smooth function for each j = 1, . . . , n. Such xj ’s are called the coordinate function with respect
to the chart. . If we fix ϕ = (x1, . . . , xn), we write f ◦ϕ−1(x1, . . . , xn) by f(x1, . . . , xn), for a sake
of simplicity.

Definition 2.7. Fix a point p ∈M . A tangent vector of M at p is an R-linear map Xp : F(M) → R
satisfying the “Leibniz rule”: (Xp)(fg) = f(p)(Xp)(g)+ g(p)Xp(f). We denote by TpM the vector
space consisting of the tangent vectors at p, and call the tangent space of M at p.

Fact 2.8. Fix a chart
(
U,ϕ = (x1, . . . , xn)

)
containing p. Then

(
∂
∂xj

)
p
: F(M) 3 f 7→ ∂f

∂xj (p) ∈ R

is an element of TpM . Moreover,
[(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p

]
is a basis of TpM . In particular TpM is

an n-dimensional vector space.

Let M̃ be another manifold of dimension m. A map f : M → M̃ is said to be smooth if ψ ◦ f
is smooth for an arbitrary chart (V, ψ) of M̃ . In particular, a map γ : I → M defined on an open
interval I ⊂ R is a smooth curve if for each t0 ∈ I, ϕ ◦ γ is a smooth map on a neighborhood of t0
into Rn, where (U,ϕ) is a chart containing γ(t0).

Fact 2.9. For a smooth curve γ(t) on M with γ(0), F(M) 3 f 7→ d
dtf ◦ γ(0) ∈ R is an element of

TpM , denoted by γ̇(0). Conversely, any Xp ∈ TpM , there exists a smooth curve γ(t) with γ(0) = p,
such that γ̇(0) = Xp. In this sense, Xp can be interpreted as a directional derivative.

25. April, 2023.
1The word “smooth” is used as a synonym of “of class C∞” in this lecture.
2Usually the atlas A of a given manifold M is assumed to be maximal, that is, any chart (U,ϕ) adapted with

arbitrary chart in A is an element of A.
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Example 2.10. Let Rn be an n-dimensional affine space as in Example 2.4. Then F(Rn) is the
set of C∞-functions of n-variables. A directional derivative of f at p in the direction X ∈ Rn
as d

dt

∣∣
t=0

f(p + tX) is identified with an element of TpRn. Thus, TpRn is identified Rn itself
(considered as a vector space).

Definition 2.11. The disjoint sum TM := ∪p∈MTpM is called the tangent bundle of M . Define
the projection π : TM 3 X → π(X) ∈M , where p = π(X) is the unique point on M such that X ∈
TpM . For each chart (U,ϕ = (x1, . . . , xn)) of M , set Φ : π−1(U) 3 X 7→ (ϕ(π(X)), X1, . . . , Xn) ∈
R2n, where X =

∑
Xj(∂/∂xj)π(X). Then a structure of 2n-manifold on TM such that (1) π is a

smooth map (U,Φ) is an adapted chart for each chart (U,ϕ) on M .

Example 2.12. Since TpRn is identified with Rn (Example 2.10), the tangent bundle of the affine
space Rn is the product Rn × Rn.

Definition 2.13. A (smooth) vector field on M is a smooth map X : M → TM satisfying π ◦X =
idM , where idM is the identity map of M .

Example 2.14. Identifying TpRn with Rn, a vector field of an affine space Rn is regarded as a
smooth map X : Rn → Rn.

We denote by X(M) the set of vector fields on M . For a function f ∈ F(M) and a vector field
X ∈ X(M), the (pointwise) scalar multiplication fX is also a vector field on M . Thus, X(M) has
a structure of F(M)-module.

Submanifolds Let M be an n-manifold. A smooth map f : M → Rk is of rank r at p ∈ M if
there exists a chart (U,ϕ) on M containing p such that the Jacobian matrix of f ◦ ϕ−1 at ϕ(p)
is of rank r. In particular, a map f is said to be an immersion if it is of rank n = dimM for all
p ∈M .

Example 2.15. Let M = (−π, π)× R and set

f : M 3 (u, v) 7−→ (sech v cosu, sech v sinu, v − tanh v)T ∈ R3.

Then f is of rank 2 if v 6= 0, and of rank 1 where v = 0.

Definition 2.16. A subset M of Rk (endowed with the topology induced to the canonical topology
of Rk) is called a submanifold of Rk if there exists a structure of manifold on M such that the
inclusion map M is an immersion. 3.

Example 2.17. A open subset U ⊂ Rk is a k-dimensional submanifold of Rk.

Fact 2.18 (Implicit Function Theorem). Let F : Rn+r → Rr be a smooth map, where n and r are
positive numbers, and assume M := F−1(0) = {p ∈ Rn+r ; F (p) = 0} is not empty. Then M is
an n-dimensional submanifold of Rn+r provided F is of rank r on M . In this case, the tangent
space TpM (⊂ Rn+r = TpRn+r) can be identified as the kernel of the Jacobian matrix dF (p) of F
at p.

Example 2.19 (Spheres). Let k be a positive number and set F : Rn+1 → R by

F (x) := F (x0, . . . , xn) =
(∑

j = 0n(xj)2
)
− 1

k
= 〈x,x〉 − 1

k
,

where 〈 , 〉 is the canonical inner product of Rn+1 = En+1. Then dF = 2(x0, . . . , xn) vanishes if
and only if x = 0 where F (0) = −1/k 6= 0. Hence Sn(k) := F−1(0) is n-dimensional submanifold
of Rn+1, which is the n-dimensional sphere.The tangent space of Sn(k) at x is

TxS
n(k) = x⊥ = {v ∈ Rn+1 ; 〈x,v〉 = 0}.

3More generally, a notion of sabmanifolds in a manifold M̃ , because the rank of f : M → M̃ can be defined by
using coordinate function on M̃ .
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Thus, the tangent bundle is expressed as a submanifold of R2(n+1) as

TSn(k) = {(x,v) ∈ Rn+1 × Rn+1 ; 〈x,x〉 = 1/k, 〈x,v〉 = 0} ⊂ Rn+1 × Rn+1 = R2(n+1).

Example 2.20. Consider the Lorentz-Minkowski inner product 〈 , 〉L on Rn+1 = Ln+1, and set

Fr(x) := 〈x,x〉L − q,

where r is a real constant. Then Mq := F−1
q (0) is a submanifold of Rn+1 if q 6= 0, and the tangent

space of Mq at x is
TxMq = x⊥ = {v ∈ Rn+1 ; 〈x,v〉L = 0}.

When q < 0, x = (x0, . . . , xn)T ∈ Mq satisfies |x0| = 1/
√
q. Thus Mq is not connected. We

denote the connected component as

Hn(k) := {(x0, . . . ,n1 )T ∈Mq ; x
0 > 0} (k = 1/q).

When q > 0 Mq := Sn−1
1 (k)) (k = 1/q)is connected submanifold.

When q = 0, M0 is called the cone or light cone which has a singularity at 0.

Riemannian manifolds

Definition 2.21. A Riemannian metric g on an n-manifold M is a correspondence p 7→ gp of p
to an inner product gp of TpM , which satisfies the smoothness condition, that is,

g(X,Y ) :M 3 p 7→ gp(Xp, yp) ∈ R

is a smooth function for each pair of sooth vector fields (X,Y ).

Example 2.22. [the Euclidean space] Identifying TpRn with Rn, the Euclidean inner product 〈 , 〉
on Rn induces a Riemannian metric of Rn. En := (Rn, 〈 , 〉) is called the Euclidean space.

Example 2.23. Let M be an n-dimensional submanifold of En+r. Since the restriction of the
inner product 〈 , 〉 of TxEn+1 = En+1 to the tangent space TxM ⊂ En+1 is positive definite, it
defines a Riemannian metric of M . Such a metric is called the induced metric from En+r.

Example 2.24. [the sphere] The sphere Sn(k) ⊂ Rn+1 of curvature k is a submanifold of the
Euclidean space with induced metric from En+1.

The hyperbolic space Let Hn(k) (k < 0) be as in Example 2.20. For each position vector
x ∈ Hn(k) ∈ Rn+1, e := x/

√
k satisfies 〈e, e〉 = −1. Then the restriction of the Lorentz-

Minkowski inner product 〈 , 〉L to the tangent space TxHn(k) = x⊥ = e⊥ is positive definite,
as seen in Exercise 1-2. Thus, 〈 , 〉L induces a Riemannian metric on Hn(k). The Riemannian
manifold obtained in this way is called the hyperbolic space of curvature k.

Appendix: Diffeomorphisms

Definition 2.25. Let U and V be open subsets of Rn. A diffeomorphism from U to V is a bijection
ϕ : U → V of class C∞ whose inverse ϕ−1 : V → U is also of class C∞.

Example 2.26. • A map ϕ : R ⊃
(
−π

2 ,
π
2

)
3 x 7→ tanx ∈ R is a diffeomorphism.

• A bijection ψ : R 3 x 7→ x3 ∈ R is not a diffeomorphism, because ψ−1(y) = 3
√
y is not

differentiable at y = 0.
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Theorem 2.27. Let ϕ : U → Rn be a C∞ map defined on an open subset U of Rn, and write
ϕ(x1, . . . , xn) =

(
y1(x1, . . . , xn), . . . , yn(x1, . . . , xn)

)
. If the Jacobian Jϕ := det( ∂y

j

∂xk )j,k=1,...,n does
not vanish at p ∈ U , there exists a neighborhood V (⊂ U) of p such that ϕ|v : V → ϕ(V ) is a
diffeomorphism.

Corollary 2.28. Let U and V be open sets of Rn. A C∞-bijection ϕ : U → V is a diffeomorphism
if its Jacobian Jϕ does not vanish on U .

Example 2.29. Let V := (0,∞)×(−π, π) ⊂ R2 and define ψ : V → R2 by ψ(r, θ) = (r cos θ, r sin θ).
Then ψ is a bijection from V to U := R2\{(x, 0) ; x 5 0}. Since the Jacobian Jψ = r 6= 0, Corollary
2.28 implies that the map ψ is diffeomorphism. Hence there exists the inverse ϕ := ψ : U → V ⊂ R2,
which is called the polar coordinate system of the plane.

Exercises

2-1 Let D := {(u, v) ∈ R2 ; u2 + v2 < 1}, and set

f : D 3 (u, v) 7→ 1

1− u2 − v2
(
1 + u2 + v2, 2u, 2v

)
∈ L3.

• For each (u, v) ∈ D,
• Show that f is a bijection from D to H3(−1).
• Compute 〈fu,fu〉, 〈fu,fv〉 and 〈fv,fv〉.
• For each (u, v) ∈ D, find an orthonormal basis [e1(u, v), e2(u, v)] of TxH3(−1), where

x = f(u, v).

2-2 Fix an (n+ 1)× (n+ 1)-orthogonal matrix A and set

ϕ : Sn(k) 3 x 7→ Ax ∈ Rn+1,

where k is a positive number. Fix x ∈ Sn(k) and take a smooth curve γ(t) on Sn(k) such
that γ(0) = x and set v := γ̇(0) ∈ TxS

n(k).

• Show that ϕ induces a bijection from Sn(k) into Sn(k).
• Show that ϕ∗v := d

dt

∣∣
t=0

ϕ ◦ γ = Av.
• Verify that 〈v,v〉 = 〈ϕ∗v,ϕ∗v〉.


