3 Pseudo Riemannian manifolds

Indefinite inner product Let V be an n-dimensional vector space over \mathbb{R}. A symmetric bilinear form \langle,$\rangle on V$ is said to be non-degenerate if

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0 \quad \text { for all } \boldsymbol{y} \in V \quad \Leftrightarrow \quad \boldsymbol{x}=\mathbf{0}
$$

Recall that \langle,$\rangle is said to be positive definite (resp. negative definite) if \langle\boldsymbol{x}, \boldsymbol{x}\rangle>0$ (resp. $\langle\boldsymbol{x}, \boldsymbol{x}\rangle>0$) for all $\boldsymbol{x} \in V \backslash\{\mathbf{0}\}$. We often call a non-degenerate symmetric bilinear form an inner product. In such a context, an inner product in the sense of Definition 1.2 is called a positive definite inner product. An inner product neither positive nor negative definite is said to be indefinite.

Example 3.1. Let $n \geqq 1$ and $r \geqq 0$ be integers, and set

$$
\mathbb{E}_{r}^{m+r}:=\left(\mathbb{R}^{m+r},\langle,\rangle\right), \quad \text { where } \quad\langle\boldsymbol{x}, \boldsymbol{y}\rangle=-\left(\sum_{j=1}^{r} x^{j} y^{j}\right)+\left(\sum_{l=r+1}^{m+r} x^{l} y^{l}\right)
$$

Then \langle,$\rangle is a non-degenerate symmetric bilinear form on the vector space \mathbb{R}^{m+r}=\mathbb{E}_{r}^{m+r}$.
When $r=0$ (resp. $m=0$) , \langle,$\rangle is positive (resp. negative) definite, otherwise it is indefinite.$
It is obvious that
Lemma 3.2. A positive (negative) definite symmetric bilinear form is non-degenerate.
Example 3.3. Let $W \subset \mathbb{R}^{3}=\mathbb{E}_{1}^{3}$ be a linear subspace given by

$$
W=\boldsymbol{x}^{\perp}=\{\boldsymbol{v} ;\langle\boldsymbol{x}, \boldsymbol{v}\rangle=0\} \quad(\boldsymbol{x} \neq \mathbf{0}) .
$$

Since the map $\boldsymbol{v} \mapsto\langle\boldsymbol{x}, \boldsymbol{v}\rangle$ is a liner map of rank 1 , its kernel W is a two dimensional subspace, called the orthogonal complement of \boldsymbol{x}.

Set $\boldsymbol{x}:=(1,1,0)^{T}$. Since $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=0, \boldsymbol{x} \in W=\boldsymbol{x}^{\perp}$ and the restriction $\left.\langle\rangle\right|_{,W \times W}$ is degenerate.
Take a linear subspace $W \subset V$. It is obvious that the restriction $\left.\langle\rangle\right|_{,W \times W}$ of a symmetric bilinear form \langle,$\rangle on V$ is a symmetric bilinear form on W.

Lemma 3.4. If \langle,$\rangle is positive (negative) definite, so is its restriction \left.\langle\rangle\right|_{,W \times W}$.
Let \langle,$\rangle be a (not necessarily definite) inner product on an n$-dimensional vector space V. Set

$$
\begin{align*}
m & :=\max \left\{\operatorname{dim} W ; W \subset V: \text { a linear subspace, }\left.\langle,\rangle\right|_{W \times W} \text { is positive definite }\right\} \\
r & :=\max \left\{\operatorname{dim} W ; W \subset V: \text { a linear subspace, }\left.\langle,\rangle\right|_{W \times W} \text { is negative definite }\right\} \tag{3.1}
\end{align*}
$$

Lemma 3.5. The subspace W_{+}(resp. W_{-}) of V of dimension m (resp.) spans V, that is, $V=W_{+} \oplus W_{-}$. In particular $m+r=n$.

Proof. Since $W_{-} \cap W_{+}=\{\mathbf{0}\}, m+r=\operatorname{dim} W_{+}+\operatorname{dim} W_{-} \leqq n=\operatorname{dim} V$.
Take a basis $\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$ on V and set $A:=\left(\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle\right)_{i, j=1, \ldots, n}$. Since A is symmetric, its eigenvalues $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ are all real. Moreover, one can take another basis $\left[\boldsymbol{w}_{j}\right]$ of V such that $A \boldsymbol{w}_{j}=\lambda_{j} \boldsymbol{w}_{j}$ for $j=1, \ldots, n$. Since $\lambda_{j}=0$ implies $\left\langle\boldsymbol{w}_{j}, \boldsymbol{w}_{j}\right\rangle=0$, all eigenvalues are non-zero. So we may assume $\lambda_{1}, \ldots, \lambda_{r^{\prime}}$ are negative, and $\lambda_{r^{\prime}+1}, \ldots, \lambda_{n}$ are positive, without loss of generality. Since the restriction of \langle,$\rangle to the subspace W_{-}^{\prime}$ spanned by $\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{r}^{\prime}\right\}$ is negative definite, it holds that $r^{\prime} \leqq r$. On the other hand, Since the restriction of \langle,$\rangle to the subspace W_{+}^{\prime}$ spanned by $\left\{\boldsymbol{w}_{r^{\prime}+1}, \ldots, \boldsymbol{w}_{n}\right\}$ is positive definite, it holds that $n-r^{\prime} \leqq m$.

Hence $r^{\prime} \leqq r, n-r^{\prime} \leqq m, m+r \leqq n$, then we have $r=r^{\prime}$ and $m=n-r^{\prime}$.

Definition 3.6. The pair (m, r) defined in (3.1) is called the signature of \langle,$\rangle .$
In particular, the inner product of signature $(n, 0)$ (resp. $(0, n)$) is positive (resp. negative) definite.

Example 3.7. The inner product of \mathbb{E}_{r}^{m+r} has the signature (m, r).
Proposition 3.8. Let \langle,$\rangle be an inner product of signature (m, r$) on an n-dimensional vector space V. For $\boldsymbol{x} \in V$ with $\langle\boldsymbol{x}, \boldsymbol{x}\rangle>0$ (resp. $\left\langle 0\right.$), the restriction of \langle,$\rangle to W:=\boldsymbol{x}^{\perp}$ has signature $(m-1, r)($ resp. $(m, r-1))$.
Proof. Assume $\langle\boldsymbol{x}, \boldsymbol{x}\rangle<0$ and let $\left(m^{\prime}, r^{\prime}\right)$ be the signature of $W=\boldsymbol{x}^{\perp}$. Since W is of dimension $n-1, m^{\prime}+r^{\prime}=n-1$ holds.

Take a subspace $W_{-}^{\prime} \subset W$ on which \langle,$\rangle is negative definite and \operatorname{dim} W_{-}^{\prime}=r^{\prime}$, and a subspace $W_{+}^{\prime} \subset W$ on which \langle,$\rangle is positive and \operatorname{dim} W_{+}^{\prime}=m^{\prime}=n-1-r^{\prime}$.

Since \langle,$\rangle is negative definite on W_{-}^{\prime} \oplus \mathbb{R} \boldsymbol{x}, r^{\prime}+1 \leqq r$ holds. On the other hand, since \langle, is positive on $W_{+}^{\prime} \subset V$, we have $m^{\prime}=n-1-r^{\prime} \leqq n-r$. Hence $r=r^{\prime}+1$ and the conclusion follows.

Pseudo Riemannian manifolds

Definition 3.9. A pseudo Riemannian metric g of signature (m, r) on a connected $n(=m+r)$ manifold M is a correspondence $p \mapsto g_{p}$ of p to an inner product g_{p} of signature (m, r) on $T_{p} M$, which satisfies the smoothness condition, that is,

$$
g(X, Y): M \ni p \mapsto g_{p}\left(X_{p}, Y_{p}\right) \in \mathbb{R}
$$

is a smooth function for each pair of sooth vector fields (X, Y).
A connected n-manifold M endowed with a pseudo Riemannian metric g is called a pseudo Riemannian manifold

A pseudo Riemannian manifold of signature $(n, 0)$ is nothing but a Riemannian manifold. A pseudo Riemannian manifold of signature $(n-1,1)$ is called a Lorentzian manifold.
Example 3.10. Similar to the case of Euclidean space, The pseudo Euclidean vector space \mathbb{E}_{r}^{m+r} induces a pseudo Riemannian metric on \mathbb{R}^{m+r} of signature (m, r). As a result, \mathbb{E}_{r}^{m+r} is considered as a pseudo Riemannian manifold of signature (m, r), called the pseudo Euclidean space. In particular \mathbb{E}_{1}^{n+1} is called the Lorentz Minkowski $(n+1)$-space.

Example 3.11. Let a be a real number, and set

$$
M^{n}(a):=\left\{\boldsymbol{x} \in \mathbb{E}_{1}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=a\right\}
$$

When $a=1 / k>0$, the connected component of $M^{n}(a)$ is the hyperbolic space of curvature k, as defined in Section 2.

When $a=-1 / k<0, M^{n}(a)$ is a connected submanifold of \mathbb{E}_{1}^{n+1}. Similar to the hyperbolic space, the tangent space $T_{\boldsymbol{x}} M^{n}(a)$ is the orthogonal complement \boldsymbol{x}^{\perp} of the position vector \boldsymbol{x}. So, by Proposition 3.8, the restriction of the inner product \langle,$\rangle of \mathbb{E}_{1}^{n+1}$ to $T_{\boldsymbol{x}} M^{n}(r)$ has signature ($n-1,1$). The Lorentzian manifold obtained in this way is called the n-dimensional de Sitter space of curvature $k(>0)$.

Setting $r=0, M^{n}(0)$ (called the lightcone) has the singularity at the origin. On the submanifold $M^{n}(0) \backslash\{0\}$, the tangent space at \boldsymbol{x} is the orthogonal complement. Since $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=0, \boldsymbol{x} \in T_{\boldsymbol{x}} M^{n}(0)$, and induced inner product on $T_{\boldsymbol{x}} M^{n}(0)$ degenerates.

Example 3.12. Let $a=1 / k$ be a negative real number, and set

$$
M^{n}(a):=\left\{\boldsymbol{x} \in \mathbb{E}_{2}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=a\right\}
$$

Then $M^{n}(a)$ is a submanifold of \mathbb{E}_{2}^{n+1}, and the induced metric has signature $(n-1,1)$, that is, $M^{n}(a)$ is a Lorentzian manifold, called the anti de Sitter space.

Exercises

3-1 Let $\mathrm{O}(2,1)$ be the set of 3×3-matrices satisfying

$$
\mathrm{O}(2,1):=\left\{A=\left(\begin{array}{ccc}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right) \in \mathrm{M}_{3}(\mathbb{R}) ; A^{T} Y A=Y\right\} \quad\left(Y=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) .
$$

- Show that $|\operatorname{det} A|=1$ for $A \in \mathrm{O}(2,1)$.
- Show that $\left|a_{00}\right| \geqq 1$ for $A=\left(a_{i j}\right)$.
- Show that the liner transformation induced by $A \in \mathrm{O}(2,1)$ preserves the inner product \langle,$\rangle of \mathbb{E}_{1}^{3}$.
- $\mathrm{SO}_{+}(2,1):=\left\{A=\left(a_{i j}\right) \in \mathrm{O}(2,1) ; \operatorname{det} A=1, a_{00} \geqq 1\right\}$ induces a bijection from the hyperbolic space $H^{2}(k) \subset \mathbb{E}_{1}^{3}$ to itself, where $k<0$.

3-2 Let $D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}$, and set

$$
\boldsymbol{f}: D \ni(u, v) \mapsto \frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in \mathbb{L}^{3}=\mathbb{E}_{1}^{3}
$$

as in Problem 2-1, and take an orthonormal basis $\left[\boldsymbol{e}_{1}(u, v), \boldsymbol{e}_{2}(u, v)\right]$ of $T_{\boldsymbol{x}} H^{3}(-1)$, where $\boldsymbol{x}=\boldsymbol{f}(u, v)$.

- Verify that, for each $(u, v) \in D,\left[\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ is a basis of \mathbb{R}^{3}, where $\boldsymbol{e}_{0}=\boldsymbol{f}$.
- Express the derivatives $\left(\boldsymbol{e}_{j}\right)_{u}$ and $\left(\boldsymbol{e}_{j}\right)_{v}(j=0,1,2)$ as linear combinations of $\left[\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$.

