3 Pseudo Riemannian manifolds

Indefinite inner product Let V be an n-dimensional vector space over \mathbb{R} . A symmetric bilinear form \langle , \rangle on V is said to be *non-degenerate* if

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$$
 for all $\boldsymbol{y} \in V$ \Leftrightarrow $\boldsymbol{x} = \boldsymbol{0}$.

Recall that \langle , \rangle is said to be *positive definite* (resp. *negative definite*) if $\langle x, x \rangle > 0$ (resp. $\langle x, x \rangle > 0$) for all $x \in V \setminus \{0\}$. We often call a non-degenerate symmetric bilinear form an *inner product*. In such a context, an inner product in the sense of Definition 1.2 is called a *positive definite inner product*. An inner product neither positive nor negative definite is said to be *indefinite*.

Example 3.1. Let $n \ge 1$ and $r \ge 0$ be integers, and set

$$\mathbb{E}_r^{m+r} := (\mathbb{R}^{m+r}, \langle , \rangle), \quad \text{where} \quad \langle \boldsymbol{x}, \boldsymbol{y} \rangle = -\left(\sum_{j=1}^r x^j y^j\right) + \left(\sum_{l=r+1}^{m+r} x^l y^l\right).$$

Then \langle , \rangle is a non-degenerate symmetric bilinear form on the vector space $\mathbb{R}^{m+r} = \mathbb{E}_r^{m+r}$.

When r = 0 (resp. m = 0), \langle , \rangle is positive (resp. negative) definite, otherwise it is indefinite.

It is obvious that

Lemma 3.2. A positive (negative) definite symmetric bilinear form is non-degenerate.

Example 3.3. Let $W \subset \mathbb{R}^3 = \mathbb{E}_1^3$ be a linear subspace given by

$$W = \boldsymbol{x}^{\perp} = \{ \boldsymbol{v} ; \langle \boldsymbol{x}, \boldsymbol{v} \rangle = 0 \} \qquad (\boldsymbol{x} \neq \boldsymbol{0}).$$

Since the map $v \mapsto \langle x, v \rangle$ is a liner map of rank 1, its kernel W is a two dimensional subspace, called the *orthogonal complement* of x.

Set $\boldsymbol{x} := (1,1,0)^T$. Since $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$, $\boldsymbol{x} \in W = \boldsymbol{x}^{\perp}$ and the restriction $\langle , \rangle |_{W \times W}$ is degenerate.

Take a linear subspace $W \subset V$. It is obvious that the restriction $\langle , \rangle|_{W \times W}$ of a symmetric bilinear form \langle , \rangle on V is a symmetric bilinear form on W.

Lemma 3.4. If \langle , \rangle is positive (negative) definite, so is its restriction $\langle , \rangle |_{W \times W}$.

Let \langle , \rangle be a (not necessarily definite) inner product on an *n*-dimensional vector space V. Set

(3.1) $m := \max\{\dim W; W \subset V: \text{ a linear subspace}, \langle , \rangle |_{W \times W} \text{ is positive definite}\},$

 $r := \max\{\dim W; W \subset V: \text{ a linear subspace}, \langle , \rangle |_{W \times W} \text{ is negative definite}\}.$

Lemma 3.5. The subspace W_+ (resp. W_-) of V of dimension m (resp.) spans V, that is, $V = W_+ \oplus W_-$. In particular m + r = n.

Proof. Since $W_- \cap W_+ = \{\mathbf{0}\}, m+r = \dim W_+ + \dim W_- \leq n = \dim V.$

Take a basis $[\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n]$ on V and set $A := (\langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle)_{i,j=1,\ldots,n}$. Since A is symmetric, its eigenvalues $(\lambda_1, \ldots, \lambda_n)$ are all real. Moreover, one can take another basis $[\boldsymbol{w}_j]$ of V such that $A \boldsymbol{w}_j = \lambda_j \boldsymbol{w}_j$ for $j = 1, \ldots, n$. Since $\lambda_j = 0$ implies $\langle \boldsymbol{w}_j, \boldsymbol{w}_j \rangle = 0$, all eigenvalues are non-zero. So we may assume $\lambda_1, \ldots, \lambda_{r'}$ are negative, and $\lambda_{r'+1}, \ldots, \lambda_n$ are positive, without loss of generality. Since the restriction of \langle , \rangle to the subspace W'_- spanned by $\{\boldsymbol{w}_1, \ldots, \boldsymbol{w}_r'\}$ is negative definite, it holds that $r' \leq r$. On the other hand, Since the restriction of \langle , \rangle to the subspace W'_+ spanned by $\{\boldsymbol{w}_{r'+1}, \ldots, \boldsymbol{w}_n\}$ is positive definite, it holds that $n - r' \leq m$.

Hence
$$r' \leq r, n - r' \leq m, m + r \leq n$$
, then we have $r = r'$ and $m = n - r'$.

Definition 3.6. The pair (m, r) defined in (3.1) is called the *signature* of \langle , \rangle .

In particular, the inner product of signature (n, 0) (resp. (0, n)) is positive (resp. negative) definite.

Example 3.7. The inner product of \mathbb{E}_r^{m+r} has the signature (m, r).

Proposition 3.8. Let \langle , \rangle be an inner product of signature (m, r) on an n-dimensional vector space V. For $\mathbf{x} \in V$ with $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ (resp. < 0), the restriction of \langle , \rangle to $W := \mathbf{x}^{\perp}$ has signature (m-1,r) (resp. (m,r-1)).

Proof. Assume $\langle \boldsymbol{x}, \boldsymbol{x} \rangle < 0$ and let (m', r') be the signature of $W = \boldsymbol{x}^{\perp}$. Since W is of dimension n-1, m'+r'=n-1 holds.

Take a subspace $W'_{-} \subset W$ on which \langle , \rangle is negative definite and dim $W'_{-} = r'$, and a subspace $W'_{+} \subset W$ on which \langle , \rangle is positive and dim $W'_{+} = m' = n - 1 - r'$.

Since \langle , \rangle is negative definite on $W'_{-} \oplus \mathbb{R}\boldsymbol{x}, r'+1 \leq r$ holds. On the other hand, since \langle , \rangle is positive on $W'_{+} \subset V$, we have $m' = n - 1 - r' \leq n - r$. Hence r = r' + 1 and the conclusion follows.

Pseudo Riemannian manifolds

Definition 3.9. A pseudo Riemannian metric g of signature (m, r) on a connected n (= m + r)manifold M is a correspondence $p \mapsto g_p$ of p to an inner product g_p of signature (m, r) on T_pM , which satisfies the smoothness condition, that is,

$$g(X,Y): M \ni p \mapsto g_p(X_p,Y_p) \in \mathbb{R}$$

is a smooth function for each pair of sooth vector fields (X, Y).

A connected *n*-manifold M endowed with a pseudo Riemannian metric g is called a pseudo Riemannian manifold

A pseudo Riemannian manifold of signature (n, 0) is nothing but a Riemannian manifold. A pseudo Riemannian manifold of signature (n - 1, 1) is called a *Lorentzian manifold*.

Example 3.10. Similar to the case of Euclidean space, The pseudo Euclidean vector space \mathbb{E}_r^{m+r} induces a pseudo Riemannian metric on \mathbb{R}^{m+r} of signature (m, r). As a result, \mathbb{E}_r^{m+r} is considered as a pseudo Riemannian manifold of signature (m, r), called the *pseudo Euclidean space*. In particular \mathbb{E}_1^{n+1} is called the *Lorentz Minkowski* (n+1)-space.

Example 3.11. Let *a* be a real number, and set

$$M^n(a) := \{ \boldsymbol{x} \in \mathbb{E}_1^{n+1} ; \langle \boldsymbol{x}, \boldsymbol{x} \rangle = a \}.$$

When a = 1/k > 0, the connected component of $M^n(a)$ is the hyperbolic space of curvature k, as defined in Section 2.

When a = -1/k < 0, $M^n(a)$ is a connected submanifold of \mathbb{E}_1^{n+1} . Similar to the hyperbolic space, the tangent space $T_{\boldsymbol{x}}M^n(a)$ is the orthogonal complement \boldsymbol{x}^{\perp} of the position vector \boldsymbol{x} . So, by Proposition 3.8, the restriction of the inner product \langle , \rangle of \mathbb{E}_1^{n+1} to $T_{\boldsymbol{x}}M^n(r)$ has signature (n-1,1). The Lorentzian manifold obtained in this way is called the *n*-dimensional *de Sitter space* of curvature $k \ (> 0)$.

Setting r = 0, $M^n(0)$ (called the *lightcone*) has the singularity at the origin. On the submanifold $M^n(0) \setminus \{0\}$, the tangent space at \boldsymbol{x} is the orthogonal complement. Since $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$, $\boldsymbol{x} \in T_{\boldsymbol{x}} M^n(0)$, and induced inner product on $T_{\boldsymbol{x}} M^n(0)$ degenerates.

Example 3.12. Let a = 1/k be a negative real number, and set

$$M^n(a) := \{ \boldsymbol{x} \in \mathbb{E}_2^{n+1} ; \langle \boldsymbol{x}, \boldsymbol{x} \rangle = a \}.$$

Then $M^n(a)$ is a submanifold of \mathbb{E}_2^{n+1} , and the induced metric has signature (n-1,1), that is, $M^n(a)$ is a Lorentzian manifold, called the *anti de Sitter space*.

Exercises

3-1 Let O(2, 1) be the set of 3×3 -matrices satisfying

$$O(2,1) := \left\{ A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{pmatrix} \in M_3(\mathbb{R}) \, ; \, A^T Y A = Y \right\} \qquad \left(Y = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right).$$

- Show that $|\det A| = 1$ for $A \in O(2, 1)$.
- Show that $|a_{00}| \ge 1$ for $A = (a_{ij})$.
- Show that the liner transformation induced by $A \in O(2,1)$ preserves the inner product $\langle \ , \ \rangle$ of \mathbb{E}^3_1 .
- SO₊(2,1) := { $A = (a_{ij}) \in O(2,1)$; det $A = 1, a_{00} \ge 1$ } induces a bijection from the hyperbolic space $H^2(k) \subset \mathbb{E}^3_1$ to itself, where k < 0.

3-2 Let $D := \{(u, v) \in \mathbb{R}^2; u^2 + v^2 < 1\}$, and set

$$f: D \ni (u, v) \mapsto \frac{1}{1 - u^2 - v^2} (1 + u^2 + v^2, 2u, 2v) \in \mathbb{L}^3 = \mathbb{E}_1^3$$

as in Problem 2-1, and take an orthonormal basis $[e_1(u,v), e_2(u,v)]$ of $T_x H^3(-1)$, where x = f(u,v).

- Verify that, for each $(u, v) \in D$, $[e_0, e_1, e_2]$ is a basis of \mathbb{R}^3 , where $e_0 = f$.
- Express the derivatives $(e_j)_u$ and $(e_j)_v$ (j = 0, 1, 2) as linear combinations of $[e_0, e_1, e_2]$.