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4 Riemannian connection for submanifolds in (pseudo) Euclidean spaces

Lie bracket Let M be an n-dimensional manifold, and denote by F(M) and X(M) the set of
smooth functions and the set of smooth vector fields on M .

Take a vector field X ∈ X(M) and fix a point p ∈ M . Then Xp ∈ TpM is a tangent vector in
the sense of Definition 2.7, and hence for each f ∈ F(M), Xf : M 3 p 7→ Xpf ∈ R is a smooth
function. Take another vector field Y , then we obtain a function Y (Xf) on M .

Express X and Y on a local chart (U ;x1, . . . , xn) as

(4.1) X =

n∑
j=1

Xj ∂

∂xj
, Y =

n∑
j=1

Y j
∂

∂xj
.

Then by Fact 2.8, we have the local expression of Y (Xf) as

Xf =

n∑
l=1

X l ∂f

∂xl
,

Y (Xf) =

n∑
j=1

Y j
∂

∂xj

(
n∑
l=1

X l ∂f

∂xl

)
=

n∑
j,l=1

Y j
(
X l ∂2f

∂xj∂xl
+
∂X l

∂xj
∂f

∂xl

)
(4.2)

which includes the second derivative of f . Thus, f 7→ Y (Xf) is not a tangent vector at each point
p. However, by the commutativity of the partial derivative, the map f 7→ X(Y f) − Y (Xf) does
not contain the second derivative of f , and hence it is a tangent vector at each point p in the sense
of Definition 2.7.

Definition 4.1. For vector fields X, Y ∈ X(M), the vector field [X,Y ] defined by [X,Y ]f =
X(Y f)− Y (Xf) is called the Lie bracket of X and Y .

The definition yields

Lemma 4.2. For X, Y , Z ∈ X(M) and f ∈ F(M), it hold that

• [X,Y ] = −[Y,X],

• [fX, Y ] = f [X,Y ]− (Y f)X, [X, fY ] = f [X,Y ] + (Xf)Y ,

• [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ].

By (4.2), we obtain

Lemma 4.3. Under the local expression (4.1), the Lie bracket is expressed as

(4.3) [X,Y ] =

n∑
j,l=1

(
Xj ∂Y

l

∂xj
− Y j

∂X l

∂xj

)
∂

∂xl
.

In particular, [∂/∂xi, ∂/∂xj ] = 0.

The Lie bracket is a kind of integrability condition4:

Fact 4.4. Let [X1, . . . , Xn] be an n-tuple of vector fields on a domain U ⊂M , which is a basis of
TpM at a point p ∈ U . Then, there exists a local coordinate system (x1, . . . , xn) around p satisfying
Xj = ∂/∂xj (j = 1, . . . , n) if and only if [Xj , Xk] = 0 for all j, k = 1, . . . , n.

16. May, 2023.
4The fact will be proven in the lecture on next quarter.
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Vector fields on Euclidean space As seen in Example 2.14, a vector field X on Rn (or En,
En1 , …, depending on the context) is considered as a smooth map X : Rn → Rn.

For a vector field X ∈ X(Rn) and a tangent vector v ∈ TpRn, we define the directional derivative
DvX of X in the direction v as

(4.4) DvX := dX(v) = (d(X1)(v), . . . , d(Xn)(v))T ,

where X1, …, Xn are the components of X which are smooth functions on Rn. The directional
derivative D induces a bilinear correspondence

X(M)× X(M) 3 (X,Y ) 7−→ DXY ∈ X(M).

We call this the canonical connection of Rn.

Example 4.5. The correspondence

x : Rn 3 x = (x1, . . . , xn)T 7→ x ∈ Rn

can be interpreted as a vector field on Rn, which is called the position vector field. For any vector
field X ∈ X(Rn),

DXx = X

holds. In fact,

DXx = dx(X) =
d

dt

∣∣∣∣
t=0

(x+ tX) = X.

In the local expression

X = (X1, . . . , Xn)T =
n∑
j=1

Xj ∂

∂xj
, Y = (Y 1, . . . , Y n)T =

n∑
j=1

Y j
∂

∂xj

with respect to the canonical coordinate system (x1, . . . , xn) of Rn,

(4.5) DXY =

n∑
j=1

(
n∑
i=1

Xi ∂Y
j

∂xi

)
∂

∂xj

holds.

Lemma 4.6. The map (X,Y ) 7→ DXY is bilinear. Moreover, for X, Y , Z ∈ X(M) and f ∈ F(M),
it hold that

(1) DfXY = fDXY , DX(fY ) = fDXY + (Xf)Y ,

(2) DXY −DYX = [X,Y ],

(3) X 〈Y, Z〉 = 〈DXY, Z〉+ 〈Y,DXZ〉,

where 〈 , 〉 is the canonical inner product of the Euclidean space En (resp. the Lorentz-Minkowski
space Ln = En1 , En2 ,…).

Proof. Local expressions (4.3), (4.5) and the definition

〈X,Y 〉 =
n∑
j=1

(±XjY j) X = (X1, . . . , Xn)T and Y = (Y 1, . . . , Y n)T

of the inner product yield the conclusion.
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Induced connection on submanifolds of the Euclidean space Let En+r be the Euclidean
(n + r)-space with inner product 〈 , 〉, and M ⊂ En+r a submanifold of dimension n, where n
and r are positive integers. As seen in Example 2.23, a Riemannian metric g on M is obtained by
restricting 〈 , 〉 to the tangent space of M .

Lemma 4.7. For each point x ∈M , the orthogonal complement

(4.6) Nx :=
(
TxM

)⊥
= {v ∈ En+r = TxEn+r ; 〈v,w〉 = 0 for all w ∈ TxM}

is an r-dimensional linear subspace of TxEn+r = En+r such that

(4.7) TxEn+r = En+r = TxM ⊕Nx.

Proof. Take an orthonormal basis [e1, . . . , en] of TxM and consider a liner map

ϕ : En+r 3 v 7→ (〈v, ej〉)j=1,...,n ∈ Rn.

Since [ϕ(ei)]i=1,...,n spans the Rn, Nx = Kerϕ is an r-dimensional subspace of En+r. Moreover,
TxM ∩Nx = {0} because v ∈ TxM ∩Nx implies 〈v,v〉 = 0. Hence En+r = TxM⊕Nx holds.

Definition 4.8. The subspace Nx in (4.6) is called the normal space of M at x. For a vector
v ∈ En+r, [v]T ∈ TxM and [v]

N ∈ Nx satisfying

v = [v]
T
+ [v]

N

are called the tangential component and the normal component of v, respectively.

Example 4.9. Let Sn(k) ⊂ En+1 be the sphere as in Example 2.19, where k > 0 is a constant.
Since TxSn(k) = x⊥, the normal space Nx is the 1-dimensional subspace Rx spanned by x. The
tangent and normal components of v ∈ Tx ∈ En+1 is obtained by

[v]
N
= 〈v, e〉 e, [v]

T
= v − 〈v, e〉 e

(
e :=

√
kx
)
.

Definition 4.10. Let M ⊂ En+r be an n-dimensional submanifold with Riemannian metric in-
duced by the canonical metric 〈 , 〉 of En+r. The map ∇5

∇ : X(M)× X(M) 3 (X,Y ) 7→ ∇XY := [DXY ]
T ∈ X(M)

is called the connection of the Riemannian manifold (M, 〈 , 〉) induced from the canonical connec-
tion of En+r

Remark 4.11. Recall that DvX for v ∈ En+r is the directional derivative of vector-valued function
X. So DXY is well-defined for vector fields on M . In fact, at a point p ∈ M , take a curve γ(t)
on M with γ(0) = p and γ̇(0) = Xp. Then DXY (p) is defined by d

dt

∣∣
t=0

Y (γ(t)) as a derivative
of the vector-valued function Y . In particular, on a local coordinate system (u1, . . . , un) of M ,
D∂/∂ujY = ∂Y/∂uj .

In the situation above, we define a notion of geodesics on the submanifold M ⊂ En+r: Let γ(t)
be a curve on M . Then the velocity vector field is the correspondence γ̇ defined by

(4.8) t 7→ γ̇(t) ∈ Tγ(t)M.

Moreover, the acceleration vector field γ̈ is defined by

(4.9) t 7→ ∇γ̇(t)γ̇(t) ∈ Tγ(t)M.

5pronounced “nabla”
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Definition 4.12 (Geodesics). A curve γ(t) on M whose acceleration vector field vanishes identi-
cally is called a geodesic on M .

Example 4.13. [Geodiscs of the sphere] Let Sn(k) ⊂ En+1 be the sphere of curvature k, where
k > 0 is a constant. Fix a point x ∈ Sn(k) and take a unit vector v ∈ TxS

n(k) = x⊥. Set

γ(t) :=
1√
k

(
cos(

√
k)te+ sin(

√
kt)v

) (
e :=

√
kx
)
.

Since e and v are unit vectors which are perpendicular each other, 〈γ, γ〉 = 1/
√
k. Hence γ is a

curve on Sn(k), and we obtain

γ̇(t) = − sin(
√
kt)e+ cos(

√
kt)v ∈ Tγ(t)S

n(k).

Moreover the acceleration vector γ̈ of γ as a curve in En+1 is obtained as

γ̈(t) = −
√
k(cos(

√
kt)e+ sin(

√
kt)v) = −kγ(t) ∈ Nγ(t).

Hence ∇γ̇ γ̇ = 0, and the curve is a geodesic on Sn(k).
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Exercises

Set
H2(−1) = {x = (x0, x1, x2)T ∈ E3

1 ; 〈x,x〉 = −1, x0 > 0}.

4-1 Let D := {(u, v) ∈ R2 ; u2 + v2 < 1}, and set

f : D 3 (u, v) 7→ 1

1− u2 − v2
(
1 + u2 + v2, 2u, 2v

)
∈ H3(−1)

and take an orthonormal frame [e0(u, v), e1(u, v), e2(u, v)] as in Problem 3-2.

• Compute the Lie bracket [e1, e2] as a liner combination of e0, e1 and e2.
• Compute Dei

ej for i, j = 1, 2.

4-2 • For each x ∈ H2(−1), show that

(∗) E3
1 = TxH

2(−1)⊕ Rx.

• Let x ∈ H2(−1) and take a unit vector v ∈ TxH
2(−1) = x⊥. Then show that

γ(t) := (cosh t)x+ (sinh t)v

is a curve on H2(−1) satisfying [γ̈(t)]
T
= 0, where [∗]T denotes the

Tγ(t)H
2(−1)-components of the decomposition (∗) with x = γ(t).


