4 Riemannian connection for submanifolds in (pseudo) Euclidean spaces

Lie bracket Let M be an n-dimensional manifold, and denote by $\mathcal{F}(M)$ and $\mathfrak{X}(M)$ the set of smooth functions and the set of smooth vector fields on M.

Take a vector field $X \in \mathfrak{X}(M)$ and fix a point $p \in M$. Then $X_p \in T_pM$ is a tangent vector in the sense of Definition 2.7, and hence for each $f \in \mathcal{F}(M)$, $Xf \colon M \ni p \mapsto X_p f \in \mathbb{R}$ is a smooth function. Take another vector field Y, then we obtain a function Y(Xf) on M.

Express X and Y on a local chart $(U; x^1, \ldots, x^n)$ as

(4.1)
$$X = \sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}, \qquad Y = \sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}}.$$

Then by Fact 2.8, we have the local expression of Y(Xf) as

(4.2)
$$Xf = \sum_{l=1}^{n} X^{l} \frac{\partial f}{\partial x^{l}},$$
$$Y(Xf) = \sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}} \left(\sum_{l=1}^{n} X^{l} \frac{\partial f}{\partial x^{l}} \right) = \sum_{j,l=1}^{n} Y^{j} \left(X^{l} \frac{\partial^{2} f}{\partial x^{j} \partial x^{l}} + \frac{\partial X^{l}}{\partial x^{j}} \frac{\partial f}{\partial x^{l}} \right)$$

which includes the second derivative of f. Thus, $f \mapsto Y(Xf)$ is not a tangent vector at each point p. However, by the commutativity of the partial derivative, the map $f \mapsto X(Yf) - Y(Xf)$ does not contain the second derivative of f, and hence it is a tangent vector at each point p in the sense of Definition 2.7.

Definition 4.1. For vector fields $X, Y \in \mathfrak{X}(M)$, the vector field [X, Y] defined by [X, Y]f = X(Yf) - Y(Xf) is called the *Lie bracket* of X and Y.

The definition yields

Lemma 4.2. For $X, Y, Z \in \mathfrak{X}(M)$ and $f \in \mathcal{F}(M)$, it hold that

- [X, Y] = -[Y, X],
- [fX,Y] = f[X,Y] (Yf)X, [X,fY] = f[X,Y] + (Xf)Y,
- [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y].

Lemma 4.3. Under the local expression (4.1), the Lie bracket is expressed as

(4.3)
$$[X,Y] = \sum_{j,l=1}^{n} \left(X^{j} \frac{\partial Y^{l}}{\partial x^{j}} - Y^{j} \frac{\partial X^{l}}{\partial x^{j}} \right) \frac{\partial}{\partial x^{l}}.$$

In particular, $[\partial/\partial x^i, \partial/\partial x^j] = \mathbf{0}$.

The Lie bracket is a kind of integrability condition⁴:

Fact 4.4. Let $[X_1, \ldots, X_n]$ be an n-tuple of vector fields on a domain $U \subset M$, which is a basis of T_pM at a point $p \in U$. Then, there exists a local coordinate system (x^1, \ldots, x^n) around p satisfying $X_j = \partial/\partial x^j$ $(j = 1, \ldots, n)$ if and only if $[X_j, X_k] = \mathbf{0}$ for all $j, k = 1, \ldots, n$.

By (4.2), we obtain

^{16.} May, 2023.

 $^{^4\}mathrm{The}$ fact will be proven in the lecture on next quarter.

Vector fields on Euclidean space As seen in Example 2.14, a vector field X on \mathbb{R}^n (or \mathbb{E}^n , \mathbb{E}^n_1 , ..., depending on the context) is considered as a smooth map $X : \mathbb{R}^n \to \mathbb{R}^n$.

For a vector field $X \in \mathfrak{X}(\mathbb{R}^n)$ and a tangent vector $v \in T_p \mathbb{R}^n$, we define the *directional derivative* $D_{v}X$ of X in the direction v as

(4.4)
$$D_{\boldsymbol{v}}X := dX(\boldsymbol{v}) = (d(X^1)(\boldsymbol{v}), \dots, d(X^n)(\boldsymbol{v}))^T,$$

where X^1 , ..., X^n are the components of X which are smooth functions on \mathbb{R}^n . The directional derivative D induces a bilinear correspondence

$$\mathfrak{X}(M) \times \mathfrak{X}(M) \ni (X,Y) \longmapsto D_X Y \in \mathfrak{X}(M)$$

We call this the *canonical connection* of \mathbb{R}^n .

Example 4.5. The correspondence

$$\boldsymbol{x} \colon \mathbb{R}^n \ni \boldsymbol{x} = (x^1, \dots, x^n)^T \mapsto \boldsymbol{x} \in \mathbb{R}^n$$

can be interpreted as a vector field on \mathbb{R}^n , which is called the *position vector field*. For any vector field $X \in \mathfrak{X}(\mathbb{R}^n)$,

$$D_X \boldsymbol{x} = X$$

holds. In fact,

$$D_X \boldsymbol{x} = d\boldsymbol{x}(X) = \left. \frac{d}{dt} \right|_{t=0} (\boldsymbol{x} + tX) = X.$$

In the local expression

$$X = (X^1, \dots, X^n)^T = \sum_{j=1}^n X^j \frac{\partial}{\partial x^j}, \qquad Y = (Y^1, \dots, Y^n)^T = \sum_{j=1}^n Y^j \frac{\partial}{\partial x^j}$$

with respect to the canonical coordinate system (x^1, \ldots, x^n) of \mathbb{R}^n ,

(4.5)
$$D_X Y = \sum_{j=1}^n \left(\sum_{i=1}^n X^i \frac{\partial Y^j}{\partial x^i} \right) \frac{\partial}{\partial x^j}$$

holds.

Lemma 4.6. The map $(X, Y) \mapsto D_X Y$ is bilinear. Moreover, for $X, Y, Z \in \mathfrak{X}(M)$ and $f \in \mathcal{F}(M)$, it hold that

- (1) $D_{fX}Y = fD_XY, D_X(fY) = fD_XY + (Xf)Y,$
- $(2) \quad D_X Y D_Y X = [X, Y],$
- (3) $X \langle Y, Z \rangle = \langle D_X Y, Z \rangle + \langle Y, D_X Z \rangle,$

where \langle , \rangle is the canonical inner product of the Euclidean space \mathbb{E}^n (resp. the Lorentz-Minkowski space $\mathbb{L}^n = \mathbb{E}_1^n, \mathbb{E}_2^n, ...$).

Proof. Local expressions (4.3), (4.5) and the definition

$$\langle X, Y \rangle = \sum_{j=1}^{n} (\pm X^{j} Y^{j}) \qquad X = (X^{1}, \dots, X^{n})^{T} \text{ and } Y = (Y^{1}, \dots, Y^{n})^{T}$$

of the inner product yield the conclusion.

Induced connection on submanifolds of the Euclidean space Let \mathbb{E}^{n+r} be the Euclidean (n+r)-space with inner product \langle , \rangle , and $M \subset \mathbb{E}^{n+r}$ a submanifold of dimension n, where n and r are positive integers. As seen in Example 2.23, a Riemannian metric g on M is obtained by restricting \langle , \rangle to the tangent space of M.

Lemma 4.7. For each point $x \in M$, the orthogonal complement

(4.6)
$$N_{\boldsymbol{x}} := (T_{\boldsymbol{x}}M)^{\perp} = \{ \boldsymbol{v} \in \mathbb{E}^{n+r} = T_{\boldsymbol{x}}\mathbb{E}^{n+r} ; \langle \boldsymbol{v}, \boldsymbol{w} \rangle = 0 \quad for \ all \quad \boldsymbol{w} \in T_{\boldsymbol{x}}M \}$$

is an r-dimensional linear subspace of $T_{\mathbf{x}}\mathbb{E}^{n+r} = \mathbb{E}^{n+r}$ such that

(4.7)
$$T_{\boldsymbol{x}}\mathbb{E}^{n+r} = \mathbb{E}^{n+r} = T_{\boldsymbol{x}}M \oplus N_{\boldsymbol{x}}$$

Proof. Take an orthonormal basis $[e_1, \ldots, e_n]$ of $T_{\boldsymbol{x}}M$ and consider a liner map

$$\varphi \colon \mathbb{E}^{n+r} \ni \boldsymbol{v} \mapsto (\langle \boldsymbol{v}, \boldsymbol{e}_j \rangle)_{j=1,\dots,n} \in \mathbb{R}^n.$$

Since $[\varphi(e_i)]_{i=1,...,n}$ spans the \mathbb{R}^n , $N_{\boldsymbol{x}} = \operatorname{Ker} \varphi$ is an *r*-dimensional subspace of \mathbb{E}^{n+r} . Moreover, $T_{\boldsymbol{x}}M \cap N_{\boldsymbol{x}} = \{\mathbf{0}\}$ because $\boldsymbol{v} \in T_{\boldsymbol{x}}M \cap N_{\boldsymbol{x}}$ implies $\langle \boldsymbol{v}, \boldsymbol{v} \rangle = 0$. Hence $\mathbb{E}^{n+r} = T_{\boldsymbol{x}}M \oplus N_{\boldsymbol{x}}$ holds. \Box

Definition 4.8. The subspace $N_{\boldsymbol{x}}$ in (4.6) is called the *normal space* of M at \boldsymbol{x} . For a vector $\boldsymbol{v} \in \mathbb{E}^{n+r}$, $[\boldsymbol{v}]^{\mathrm{T}} \in T_{\boldsymbol{x}}M$ and $[\boldsymbol{v}]^{\mathrm{N}} \in N_{\boldsymbol{x}}$ satisfying

$$oldsymbol{v} = \left[oldsymbol{v}
ight]^{\mathrm{T}} + \left[oldsymbol{v}
ight]^{\mathrm{N}}$$

are called the *tangential component* and the *normal component* of \boldsymbol{v} , respectively.

Example 4.9. Let $S^n(k) \subset \mathbb{E}^{n+1}$ be the sphere as in Example 2.19, where k > 0 is a constant. Since $T_{\boldsymbol{x}}S^n(k) = \boldsymbol{x}^{\perp}$, the normal space $N_{\boldsymbol{x}}$ is the 1-dimensional subspace $\mathbb{R}\boldsymbol{x}$ spanned by \boldsymbol{x} . The tangent and normal components of $\boldsymbol{v} \in T_{\boldsymbol{x}} \in \mathbb{E}^{n+1}$ is obtained by

$$[\boldsymbol{v}]^{\mathrm{N}} = \langle \boldsymbol{v}, \boldsymbol{e} \rangle \, \boldsymbol{e}, \qquad [\boldsymbol{v}]^{\mathrm{T}} = \boldsymbol{v} - \langle \boldsymbol{v}, \boldsymbol{e} \rangle \, \boldsymbol{e} \qquad \left(\boldsymbol{e} := \sqrt{k} \boldsymbol{x} \right).$$

Definition 4.10. Let $M \subset \mathbb{E}^{n+r}$ be an *n*-dimensional submanifold with Riemannian metric induced by the canonical metric \langle , \rangle of \mathbb{E}^{n+r} . The map ∇^5

$$abla : \mathfrak{X}(M) \times \mathfrak{X}(M) \ni (X, Y) \mapsto
abla_X Y := [D_X Y]^{\mathrm{T}} \in \mathfrak{X}(M)$$

is called the *connection* of the Riemannian manifold (M, \langle , \rangle) induced from the canonical connection of \mathbb{E}^{n+r}

Remark 4.11. Recall that $D_{\boldsymbol{v}}X$ for $\boldsymbol{v} \in \mathbb{E}^{n+r}$ is the directional derivative of vector-valued function X. So D_XY is well-defined for vector fields on M. In fact, at a point $p \in M$, take a curve $\gamma(t)$ on M with $\gamma(0) = p$ and $\dot{\gamma}(0) = X_p$. Then $D_XY(p)$ is defined by $\frac{d}{dt}\Big|_{t=0}Y(\gamma(t))$ as a derivative of the vector-valued function Y. In particular, on a local coordinate system (u^1, \ldots, u^n) of M, $D_{\partial/\partial u^j}Y = \partial Y/\partial u^j$.

In the situation above, we define a notion of geodesics on the submanifold $M \subset \mathbb{E}^{n+r}$: Let $\gamma(t)$ be a curve on M. Then the velocity vector field is the correspondence $\dot{\gamma}$ defined by

(4.8)
$$t \mapsto \dot{\gamma}(t) \in T_{\gamma(t)}M.$$

Moreover, the acceleration vector field $\ddot{\gamma}$ is defined by

(4.9)
$$t \mapsto \nabla_{\dot{\gamma}(t)} \dot{\gamma}(t) \in T_{\gamma(t)} M.$$

⁵pronounced "nabla"

Definition 4.12 (Geodesics). A curve $\gamma(t)$ on M whose acceleration vector field vanishes identically is called a *geodesic* on M.

Example 4.13. [Geodiscs of the sphere] Let $S^n(k) \subset \mathbb{E}^{n+1}$ be the sphere of curvature k, where k > 0 is a constant. Fix a point $\boldsymbol{x} \in S^n(k)$ and take a unit vector $\boldsymbol{v} \in T_{\boldsymbol{x}}S^n(k) = \boldsymbol{x}^{\perp}$. Set

$$\gamma(t) := \frac{1}{\sqrt{k}} \left(\cos(\sqrt{k})t \boldsymbol{e} + \sin(\sqrt{k}t) \boldsymbol{v} \right) \qquad \left(\boldsymbol{e} := \sqrt{k} \boldsymbol{x} \right).$$

Since e and v are unit vectors which are perpendicular each other, $\langle \gamma, \gamma \rangle = 1/\sqrt{k}$. Hence γ is a curve on $S^n(k)$, and we obtain

$$\dot{\gamma}(t) = -\sin(\sqrt{k}t)\boldsymbol{e} + \cos(\sqrt{k}t)\boldsymbol{v} \in T_{\gamma(t)}S^n(k).$$

Moreover the acceleration vector $\ddot{\gamma}$ of γ as a curve in \mathbb{E}^{n+1} is obtained as

$$\ddot{\gamma}(t) = -\sqrt{k}(\cos(\sqrt{k}t)\boldsymbol{e} + \sin(\sqrt{k}t)\boldsymbol{v}) = -k\gamma(t) \in N_{\gamma(t)}.$$

Hence $\nabla_{\dot{\gamma}}\dot{\gamma} = \mathbf{0}$, and the curve is a geodesic on $S^n(k)$.

Exercises

 Set

$$H^{2}(-1) = \{ \boldsymbol{x} = (x^{0}, x^{1}, x^{2})^{T} \in \mathbb{E}_{1}^{3}; \, \langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1, x_{0} > 0 \}.$$

4-1 Let $D := \{(u, v) \in \mathbb{R}^2 ; u^2 + v^2 < 1\}$, and set

$$f: D \ni (u, v) \mapsto \frac{1}{1 - u^2 - v^2} (1 + u^2 + v^2, 2u, 2v) \in H^3(-1)$$

and take an orthonormal frame $[e_0(u, v), e_1(u, v), e_2(u, v)]$ as in Problem 3-2.

- Compute the Lie bracket $[e_1, e_2]$ as a liner combination of e_0, e_1 and e_2 .
- Compute $D_{\boldsymbol{e}_i} \boldsymbol{e}_j$ for i, j = 1, 2.
- **4-2** For each $x \in H^2(-1)$, show that

$$(*) \mathbb{E}_1^3 = T_{\boldsymbol{x}} H^2(-1) \oplus \mathbb{R} \boldsymbol{x}$$

• Let $\boldsymbol{x} \in H^2(-1)$ and take a unit vector $\boldsymbol{v} \in T_{\boldsymbol{x}}H^2(-1) = \boldsymbol{x}^{\perp}$. Then show that

$$\gamma(t) := (\cosh t)\boldsymbol{x} + (\sinh t)\boldsymbol{v}$$

is a curve on $H^2(-1)$ satisfying $[\ddot{\gamma}(t)]^{\mathrm{T}} = \mathbf{0}$, where $[*]^{\mathrm{T}}$ denotes the $T_{\gamma(t)}H^2(-1)$ -components of the decomposition (*) with $\boldsymbol{x} = \gamma(t)$.