4 Riemannian connection for submanifolds in (pseudo) Euclidean spaces

Lie bracket Let M be an n-dimensional manifold, and denote by $\mathcal{F}(M)$ and $\mathfrak{X}(M)$ the set of smooth functions and the set of smooth vector fields on M.

Take a vector field $X \in \mathfrak{X}(M)$ and fix a point $p \in M$. Then $X_{p} \in T_{p} M$ is a tangent vector in the sense of Definition 2.7, and hence for each $f \in \mathcal{F}(M), X f: M \ni p \mapsto X_{p} f \in \mathbb{R}$ is a smooth function. Take another vector field Y, then we obtain a function $Y(X f)$ on M.

Express X and Y on a local chart $\left(U ; x^{1}, \ldots, x^{n}\right)$ as

$$
\begin{equation*}
X=\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}, \quad Y=\sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}} \tag{4.1}
\end{equation*}
$$

Then by Fact 2.8, we have the local expression of $Y(X f)$ as

$$
\begin{align*}
X f & =\sum_{l=1}^{n} X^{l} \frac{\partial f}{\partial x^{l}}, \\
Y(X f) & =\sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}}\left(\sum_{l=1}^{n} X^{l} \frac{\partial f}{\partial x^{l}}\right)=\sum_{j, l=1}^{n} Y^{j}\left(X^{l} \frac{\partial^{2} f}{\partial x^{j} \partial x^{l}}+\frac{\partial X^{l}}{\partial x^{j}} \frac{\partial f}{\partial x^{l}}\right) \tag{4.2}
\end{align*}
$$

which includes the second derivative of f. Thus, $f \mapsto Y(X f)$ is not a tangent vector at each point p. However, by the commutativity of the partial derivative, the map $f \mapsto X(Y f)-Y(X f)$ does not contain the second derivative of f, and hence it is a tangent vector at each point p in the sense of Definition 2.7.

Definition 4.1. For vector fields $X, Y \in \mathfrak{X}(M)$, the vector field $[X, Y]$ defined by $[X, Y] f=$ $X(Y f)-Y(X f)$ is called the Lie bracket of X and Y.

The definition yields
Lemma 4.2. For $X, Y, Z \in \mathfrak{X}(M)$ and $f \in \mathcal{F}(M)$, it hold that

- $[X, Y]=-[Y, X]$,
- $[f X, Y]=f[X, Y]-(Y f) X,[X, f Y]=f[X, Y]+(X f) Y$,
- $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]$.

By (4.2), we obtain
Lemma 4.3. Under the local expression (4.1), the Lie bracket is expressed as

$$
\begin{equation*}
[X, Y]=\sum_{j, l=1}^{n}\left(X^{j} \frac{\partial Y^{l}}{\partial x^{j}}-Y^{j} \frac{\partial X^{l}}{\partial x^{j}}\right) \frac{\partial}{\partial x^{l}} \tag{4.3}
\end{equation*}
$$

In particular, $\left[\partial / \partial x^{i}, \partial / \partial x^{j}\right]=\mathbf{0}$.
The Lie bracket is a kind of integrability condition ${ }^{4}$:
Fact 4.4. Let $\left[X_{1}, \ldots, X_{n}\right]$ be an n-tuple of vector fields on a domain $U \subset M$, which is a basis of $T_{p} M$ at a point $p \in U$. Then, there exists a local coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ around p satisfying $X_{j}=\partial / \partial x^{j}(j=1, \ldots, n)$ if and only if $\left[X_{j}, X_{k}\right]=\mathbf{0}$ for all $j, k=1, \ldots, n$.

[^0]Vector fields on Euclidean space As seen in Example 2.14, a vector field X on \mathbb{R}^{n} (or \mathbb{E}^{n}, $\mathbb{E}_{1}^{n}, \ldots$, depending on the context) is considered as a smooth map $X: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

For a vector field $X \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$ and a tangent vector $\boldsymbol{v} \in T_{p} \mathbb{R}^{n}$, we define the directional derivative $D \boldsymbol{v} X$ of X in the direction \boldsymbol{v} as

$$
\begin{equation*}
D \boldsymbol{v} X:=d X(\boldsymbol{v})=\left(d\left(X^{1}\right)(\boldsymbol{v}), \ldots, d\left(X^{n}\right)(\boldsymbol{v})\right)^{T} \tag{4.4}
\end{equation*}
$$

where X^{1}, \ldots, X^{n} are the components of X which are smooth functions on \mathbb{R}^{n}. The directional derivative D induces a bilinear correspondence

$$
\mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \longmapsto D_{X} Y \in \mathfrak{X}(M)
$$

We call this the canonical connection of \mathbb{R}^{n}.
Example 4.5. The correspondence

$$
\boldsymbol{x}: \mathbb{R}^{n} \ni \boldsymbol{x}=\left(x^{1}, \ldots, x^{n}\right)^{T} \mapsto \boldsymbol{x} \in \mathbb{R}^{n}
$$

can be interpreted as a vector field on \mathbb{R}^{n}, which is called the position vector field. For any vector field $X \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$,

$$
D_{X} \boldsymbol{x}=X
$$

holds. In fact,

$$
D_{X} \boldsymbol{x}=d \boldsymbol{x}(X)=\left.\frac{d}{d t}\right|_{t=0}(\boldsymbol{x}+t X)=X
$$

In the local expression

$$
X=\left(X^{1}, \ldots, X^{n}\right)^{T}=\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}, \quad Y=\left(Y^{1}, \ldots, Y^{n}\right)^{T}=\sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}}
$$

with respect to the canonical coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ of \mathbb{R}^{n},

$$
\begin{equation*}
D_{X} Y=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} X^{i} \frac{\partial Y^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}} \tag{4.5}
\end{equation*}
$$

holds.
Lemma 4.6. The $\operatorname{map}(X, Y) \mapsto D_{X} Y$ is bilinear. Moreover, for $X, Y, Z \in \mathfrak{X}(M)$ and $f \in \mathcal{F}(M)$, it hold that
(1) $D_{f X} Y=f D_{X} Y, D_{X}(f Y)=f D_{X} Y+(X f) Y$,
(2) $D_{X} Y-D_{Y} X=[X, Y]$,
(3) $X\langle Y, Z\rangle=\left\langle D_{X} Y, Z\right\rangle+\left\langle Y, D_{X} Z\right\rangle$,
where \langle,$\rangle is the canonical inner product of the Euclidean space \mathbb{E}^{n}$ (resp. the Lorentz-Minkowski space $\left.\mathbb{L}^{n}=\mathbb{E}_{1}^{n}, \mathbb{E}_{2}^{n}, \ldots\right)$.

Proof. Local expressions (4.3), (4.5) and the definition

$$
\langle X, Y\rangle=\sum_{j=1}^{n}\left(\pm X^{j} Y^{j}\right) \quad X=\left(X^{1}, \ldots, X^{n}\right)^{T} \quad \text { and } \quad Y=\left(Y^{1}, \ldots, Y^{n}\right)^{T}
$$

of the inner product yield the conclusion.

Induced connection on submanifolds of the Euclidean space Let \mathbb{E}^{n+r} be the Euclidean $(n+r)$-space with inner product \langle,$\rangle , and M \subset \mathbb{E}^{n+r}$ a submanifold of dimension n, where n and r are positive integers. As seen in Example 2.23, a Riemannian metric g on M is obtained by restricting \langle,$\rangle to the tangent space of M$.

Lemma 4.7. For each point $\boldsymbol{x} \in M$, the orthogonal complement

$$
\begin{equation*}
N_{\boldsymbol{x}}:=\left(T_{\boldsymbol{x}} M\right)^{\perp}=\left\{\boldsymbol{v} \in \mathbb{E}^{n+r}=T_{\boldsymbol{x}} \mathbb{E}^{n+r} ;\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0 \quad \text { for all } \quad \boldsymbol{w} \in T \boldsymbol{x} M\right\} \tag{4.6}
\end{equation*}
$$

is an r-dimensional linear subspace of $T_{\boldsymbol{x}} \mathbb{E}^{n+r}=\mathbb{E}^{n+r}$ such that

$$
\begin{equation*}
T_{\boldsymbol{x}} \mathbb{E}^{n+r}=\mathbb{E}^{n+r}=T_{\boldsymbol{x}} M \oplus N_{\boldsymbol{x}} \tag{4.7}
\end{equation*}
$$

Proof. Take an orthonormal basis $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ of $T_{\boldsymbol{x}} M$ and consider a liner map

$$
\boldsymbol{\varphi}: \mathbb{E}^{n+r} \ni \boldsymbol{v} \mapsto\left(\left\langle\boldsymbol{v}, \boldsymbol{e}_{j}\right\rangle\right)_{j=1, \ldots, n} \in \mathbb{R}^{n}
$$

Since $\left[\boldsymbol{\varphi}\left(\boldsymbol{e}_{i}\right)\right]_{i=1, \ldots, n}$ spans the $\mathbb{R}^{n}, N_{\boldsymbol{x}}=\operatorname{Ker} \boldsymbol{\varphi}$ is an r-dimensional subspace of \mathbb{E}^{n+r}. Moreover, $T \boldsymbol{x} M \cap N_{\boldsymbol{x}}=\{\mathbf{0}\}$ because $\boldsymbol{v} \in T_{\boldsymbol{x}} M \cap N_{\boldsymbol{x}}$ implies $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=0$. Hence $\mathbb{E}^{n+r}=T_{\boldsymbol{x}} M \oplus N_{\boldsymbol{x}}$ holds.

Definition 4.8. The subspace $N_{\boldsymbol{x}}$ in (4.6) is called the normal space of M at \boldsymbol{x}. For a vector $\boldsymbol{v} \in \mathbb{E}^{n+r},[\boldsymbol{v}]^{\mathrm{T}} \in T_{\boldsymbol{x}} M$ and $[\boldsymbol{v}]^{\mathrm{N}} \in N_{\boldsymbol{x}}$ satisfying

$$
\boldsymbol{v}=[\boldsymbol{v}]^{\mathrm{T}}+[\boldsymbol{v}]^{\mathrm{N}}
$$

are called the tangential component and the normal component of \boldsymbol{v}, respectively.
Example 4.9. Let $S^{n}(k) \subset \mathbb{E}^{n+1}$ be the sphere as in Example 2.19, where $k>0$ is a constant. Since $T_{\boldsymbol{x}} S^{n}(k)=\boldsymbol{x}^{\perp}$, the normal space $N_{\boldsymbol{x}}$ is the 1-dimensional subspace $\mathbb{R} \boldsymbol{x}$ spanned by \boldsymbol{x}. The tangent and normal components of $\boldsymbol{v} \in T_{\boldsymbol{x}} \in \mathbb{E}^{n+1}$ is obtained by

$$
[\boldsymbol{v}]^{\mathrm{N}}=\langle\boldsymbol{v}, \boldsymbol{e}\rangle \boldsymbol{e}, \quad[\boldsymbol{v}]^{\mathrm{T}}=\boldsymbol{v}-\langle\boldsymbol{v}, \boldsymbol{e}\rangle \boldsymbol{e} \quad(\boldsymbol{e}:=\sqrt{k} \boldsymbol{x}) .
$$

Definition 4.10. Let $M \subset \mathbb{E}^{n+r}$ be an n-dimensional submanifold with Riemannian metric induced by the canonical metric \langle,$\rangle of \mathbb{E}^{n+r}$. The map ∇^{5}

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \mapsto \nabla_{X} Y:=\left[D_{X} Y\right]^{\mathrm{T}} \in \mathfrak{X}(M)
$$

is called the connection of the Riemannian manifold $(M,\langle\rangle$,$) induced from the canonical connec-$ tion of \mathbb{E}^{n+r}

Remark 4.11. Recall that $D \boldsymbol{v} X$ for $\boldsymbol{v} \in \mathbb{E}^{n+r}$ is the directional derivative of vector-valued function X. So $D_{X} Y$ is well-defined for vector fields on M. In fact, at a point $p \in M$, take a curve $\gamma(t)$ on M with $\gamma(0)=p$ and $\dot{\gamma}(0)=X_{p}$. Then $D_{X} Y(p)$ is defined by $\left.\frac{d}{d t}\right|_{t=0} Y(\gamma(t))$ as a derivative of the vector-valued function Y. In particular, on a local coordinate system $\left(u^{1}, \ldots, u^{n}\right)$ of M, $D_{\partial / \partial u^{j}} Y=\partial Y / \partial u^{j}$.

In the situation above, we define a notion of geodesics on the submanifold $M \subset \mathbb{E}^{n+r}$: Let $\gamma(t)$ be a curve on M. Then the velocity vector field is the correspondence $\dot{\gamma}$ defined by

$$
\begin{equation*}
t \mapsto \dot{\gamma}(t) \in T_{\gamma(t)} M \tag{4.8}
\end{equation*}
$$

Moreover, the acceleration vector field $\ddot{\gamma}$ is defined by

$$
\begin{equation*}
t \mapsto \nabla_{\dot{\gamma}(t)} \dot{\gamma}(t) \in T_{\gamma(t)} M \tag{4.9}
\end{equation*}
$$

[^1]Definition 4.12 (Geodesics). A curve $\gamma(t)$ on M whose acceleration vector field vanishes identically is called a geodesic on M.
Example 4.13. [Geodiscs of the sphere] Let $S^{n}(k) \subset \mathbb{E}^{n+1}$ be the sphere of curvature k, where $k>0$ is a constant. Fix a point $\boldsymbol{x} \in S^{n}(k)$ and take a unit vector $\boldsymbol{v} \in T_{\boldsymbol{x}} S^{n}(k)=\boldsymbol{x}^{\perp}$. Set

$$
\gamma(t):=\frac{1}{\sqrt{k}}(\cos (\sqrt{k}) t \boldsymbol{e}+\sin (\sqrt{k} t) \boldsymbol{v}) \quad(\boldsymbol{e}:=\sqrt{k} \boldsymbol{x}) .
$$

Since \boldsymbol{e} and \boldsymbol{v} are unit vectors which are perpendicular each other, $\langle\gamma, \gamma\rangle=1 / \sqrt{k}$. Hence γ is a curve on $S^{n}(k)$, and we obtain

$$
\dot{\gamma}(t)=-\sin (\sqrt{k} t) \boldsymbol{e}+\cos (\sqrt{k} t) \boldsymbol{v} \in T_{\gamma(t)} S^{n}(k)
$$

Moreover the acceleration vector $\ddot{\gamma}$ of γ as a curve in \mathbb{E}^{n+1} is obtained as

$$
\ddot{\gamma}(t)=-\sqrt{k}(\cos (\sqrt{k} t) \boldsymbol{e}+\sin (\sqrt{k} t) \boldsymbol{v})=-k \gamma(t) \in N_{\gamma(t)} .
$$

Hence $\nabla_{\dot{\gamma}} \dot{\gamma}=\mathbf{0}$, and the curve is a geodesic on $S^{n}(k)$.

Exercises

Set

$$
H^{2}(-1)=\left\{\boldsymbol{x}=\left(x^{0}, x^{1}, x^{2}\right)^{T} \in \mathbb{E}_{1}^{3} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1, x_{0}>0\right\} .
$$

4-1 Let $D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}$, and set

$$
\boldsymbol{f}: D \ni(u, v) \mapsto \frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in H^{3}(-1)
$$

and take an orthonormal frame $\left[\boldsymbol{e}_{0}(u, v), \boldsymbol{e}_{1}(u, v), \boldsymbol{e}_{2}(u, v)\right]$ as in Problem 3-2.

- Compute the Lie bracket $\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ as a liner combination of $\boldsymbol{e}_{0}, \boldsymbol{e}_{1}$ and \boldsymbol{e}_{2}.
- Compute $D \boldsymbol{e}_{i} \boldsymbol{e}_{j}$ for $i, j=1,2$.

4-2 - For each $\boldsymbol{x} \in H^{2}(-1)$, show that

$$
\begin{equation*}
\mathbb{E}_{1}^{3}=T_{\boldsymbol{x}} H^{2}(-1) \oplus \mathbb{R} \boldsymbol{x} \tag{*}
\end{equation*}
$$

- Let $\boldsymbol{x} \in H^{2}(-1)$ and take a unit vector $\boldsymbol{v} \in T_{\boldsymbol{x}} H^{2}(-1)=\boldsymbol{x}^{\perp}$. Then show that

$$
\gamma(t):=(\cosh t) \boldsymbol{x}+(\sinh t) \boldsymbol{v}
$$

is a curve on $H^{2}(-1)$ satisfying $[\ddot{\gamma}(t)]^{\mathrm{T}}=\mathbf{0}$, where $[*]^{\mathrm{T}}$ denotes the $T_{\gamma(t)} H^{2}(-1)$-components of the decomposition $(*)$ with $\boldsymbol{x}=\gamma(t)$.

[^0]: 16. May, 2023.
 ${ }^{4}$ The fact will be proven in the lecture on next quarter.
[^1]: ${ }^{5}$ pronounced "nabla"

