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4 Riemannian connection for submanifolds in (pseudo) Euclidean spaces

Lie bracket Let M be an n-dimensional manifold, and denote by F(M) and X(M) the set of
smooth functions and the set of smooth vector fields on M.

Take a vector field X € X(M) and fix a point p € M. Then X, € T,,M is a tangent vector in
the sense of Definition 2.7, and hence for each f € F(M), Xf: M 3 p— X,f € R is a smooth
function. Take another vector field Y, then we obtain a function Y (X f) on M.

Express X and Y on a local chart (U;z!,...,2") as

(4.1) ; Ox7’ ; o7

Then by Fact 2.8, we have the local expression of Y (X f) as

Xf= legfl,

; of ; o%f  ox' of
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which includes the second derivative of f. Thus, f +— Y (X f) is not a tangent vector at each point
p. However, by the commutativity of the partial derivative, the map f — X(Y f) — Y(Xf) does
not contain the second derivative of f, and hence it is a tangent vector at each point p in the sense
of Definition 2.7.

Definition 4.1. For vector fields X, Y € X(M), the vector field [X,Y] defined by [X,Y]f =
X(Yf)—=Y(X/f) is called the Lie bracket of X and Y.

The definition yields
Lemma 4.2. For X, Y, Z € X(M) and f € F(M), it hold that

« [(X,Y]=-[y, X],

o XY= XY= (YNHX, X Y] = X Y]+ (XY

o [[X,Y],Z]1+ [V, 2], X]+ [[Z, X],Y].

By (4.2), we obtain
Lemma 4.3. Under the local expression (4.1), the Lie bracket is expressed as

~ (Y 0XT 9

(4.3) JXZ:I ( ) 8xj) 5l
In particular, [0/0x",0/027] =

The Lie bracket is a kind of integrability condition?:

Fact 4.4. Let [X4,...,X,] be an n-tuple of vector fields on a domain U C M, which is a basis of

T,M at a point p € U. Then, there exists a local coordinate system (z*,...,z") around p satisfying
X; =0/027 (j =1,...,n) if and only if [X;, Xx] =0 for all jk=1,...,n
16. May, 2023.

4The fact will be proven in the lecture on next quarter.
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Vector fields on Euclidean space As seen in Example 2.14, a vector field X on R" (or E,
E?, ..., depending on the context) is considered as a smooth map X: R" — R™.

For a vector field X € X(R™) and a tangent vector v € T,R™, we define the directional derivative
Dy X of X in the direction v as

(4.4) DyX :=dX(v) = (d(X)(v),...,d(X")(v))T,

where X!, .., X" are the components of X which are smooth functions on R™. The directional
derivative D induces a bilinear correspondence

X(M)xX(M)> (X,Y)— DxY € X(M).
We call this the canonical connection of R™.

Example 4.5. The correspondence

z:R"sx=(z',.... 2" = x cR"

can be interpreted as a vector field on R™, which is called the position vector field. For any vector
field X € X(R"™),
DX{B =X

holds. In fact,

d
Dxzx =de(X)= — (x+tX)=X.
dt{,_,
In the local expression
e . pyet e _ 5
j=1 Jj=1
with respect to the canonical coordinate system (z!,...,z") of R",
N NY.) C AN,

4.5 DxY = X'— | —
( ) X ; <Z=Zl ot ) oxJ

holds.

Lemma 4.6. The map (X,Y) — DxY is bilinear. Moreover, for X,Y,Z € X(M) and f € F(M),
it hold that

(1) DyxY = fDxY, Dx(fY) = fDxY + (X[)Y,
(2) DxY — Dy X = [X,Y],
(3) X(Y,Z) =(DxY,Z) +(Y,Dx Z),

where { , ) is the canonical inner product of the Euclidean space E™ (resp. the Lorentz-Minkowski
space L™ =K, EL ..).

Proof. Local expressions (4.3), (4.5) and the definition
(X, )= (=XY))  X=(x'..., X" and Y =(Y',... Y
j=1

of the inner product yield the conclusion. O
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Induced connection on submanifolds of the Euclidean space Let E"*" be the Euclidean
(n + r)-space with inner product {, ), and M C E"*" a submanifold of dimension n, where n
and r are positive integers. As seen in Example 2.23, a Riemannian metric g on M is obtained by
restricting ( , ) to the tangent space of M.

Lemma 4.7. For each point x € M, the orthogonal complement
(4.6) Ng = (TxM)" = {v € B"™" = TgE™"; (v,w) =0 for all w € TypM}
is an r-dimensional linear subspace of T E™T" = E"T" such that
(4.7) TgE" " = E""" = T M © Ny.
Proof. Take an orthonormal basis [ey, ..., e,] of Te M and consider a liner map
p: B 50— ((v,€5))j=1,..n € R".

Since [p(€;)]i=1,....n spans the R™, Nz = Ker ¢ is an r-dimensional subspace of E"*". Moreover,
TxM N Ng = {0} because v € Ty M N Ny implies (v, v) = 0. Hence E"™" = Tz M & Ng holds. [

Definition 4.8. The subspace Nz in (4.6) is called the normal space of M at x. For a vector
v e E"t, [v]" € Te M and [v]N € Ny satisfying

are called the tangential component and the normal component of v, respectively.

Example 4.9. Let S"(k) C E**! be the sphere as in Example 2.19, where k > 0 is a constant.
Since T S™(k) = ', the normal space Ng is the 1-dimensional subspace Rz spanned by . The
tangent and normal components of v € T € E*t! is obtained by

[N = (v,e)e, W' =v—(v,ee (e = \/%ac) .

Definition 4.10. Let M C E™*" be an n-dimensional submanifold with Riemannian metric in-
duced by the canonical metric ( , ) of E**". The map V°

V:X(M) x X(M) 5 (X,Y) —~ VxY := [DxY]" € X(M)

is called the connection of the Riemannian manifold (M, ( , )) induced from the canonical connec-
tion of E"*"

Remark 4.11. Recall that Dy X for v € E*T7 is the directional derivative of vector-valued function
X. So DxY is well-defined for vector fields on M. In fact, at a point p € M, take a curve ()
on M with «(0) = p and 4(0) = X,,. Then DxY (p) is defined by %L:O Y (7(t)) as a derivative
of the vector-valued function Y. In particular, on a local coordinate system (ul,...,u"™) of M,
D(’)/BufY = 8Y/8’U/j

In the situation above, we define a notion of geodesics on the submanifold M C E"*": Let v(t)
be a curve on M. Then the velocity vector field is the correspondence + defined by

(4.8) t—g(t) € Ty M.
Moreover, the acceleration vector field 7 is defined by

(4.9) t— V:y(t)"y(t) €Ty nM.

5pronounced “nabla”
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Definition 4.12 (Geodesics). A curve ¥(t) on M whose acceleration vector field vanishes identi-
cally is called a geodesic on M.

Example 4.13. [Geodiscs of the sphere] Let S™(k) C E"*! be the sphere of curvature k, where
k > 0 is a constant. Fix a point € S"(k) and take a unit vector v € Tp:S™(k) = 1. Set

~(t) == % (cos(\/%)te + Sin(\/ﬁt)v) (e:= \/Em)

Since e and v are unit vectors which are perpendicular each other, (y,v) =1/ Vk. Hence v is a
curve on S™(k), and we obtain

3(t) = —sin(Vkt)e + cos(Vkt)v € Ty S™ (k).
Moreover the acceleration vector 4 of v as a curve in E**! is obtained as
5(t) = —VE(cos(VEt)e + sin(Vkt)v) = —ky(t) € Ny

Hence V5% = 0, and the curve is a geodesic on S™(k).
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Ezxercises

Set
H*(—1) = {z = (2%, 2", 2*)T € E}; (z, ) = —1,20 > 0}.

4-1 Let D := {(u,v) € R?; u? + v% < 1}, and set

1
S(1+ u® + 0%, 2u,20) € H3(—1)

f:Da(u,'U)’—)m

and take an orthonormal frame [eg(u,v), e1(u,v), ea(u,v)] as in Problem 3-2.

o Compute the Lie bracket [e1, es] as a liner combination of ey, e; and es.

o Compute De,e; for i, j =1,2.
4-2 o For each € H%(—1), show that
(%) E = TpH?(—1) & Rz
o Let € H?(—1) and take a unit vector v € T H?>(—1) = 1. Then show that
~(t) := (cosht)x + (sinh t)v

is a curve on H2(—1) satisfying [7(£)]" = 0, where [«]* denotes the
T+ H?(—1)-components of the decomposition (x) with & = y(¢).



