5 Riemannian connection

Riemannian connection Let (M, g) be a (pseudo) Riemannian manifold, and denote by \langle, the inner product induced by g. We let $\mathcal{F}(M)$ and $\mathfrak{X}(M)$ be the set of smooth functions and smooth vector fields on M, respectively.
Lemma 5.1. There exists the unique bilinear map

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \longmapsto \nabla_{X} Y \in \mathfrak{X}(M)
$$

satisfying

- $\nabla_{X} Y-\nabla_{Y} X=[X, Y]$,
- $X\langle Y, Z\rangle=\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle$
for $X, Y, Z \in \mathfrak{X}(M)$, where [,] denotes the Lie bracket in Definition 4.1.
Proof. Set

$$
\begin{equation*}
C(X, Y, Z):=\frac{1}{2}(X\langle Y, Z\rangle+Y\langle Z, X\rangle-Z\langle X, Y\rangle-\langle Y,[X, Z]\rangle+\langle X,[Z, Y]\rangle-\langle Z,[Y, X]\rangle) \tag{5.1}
\end{equation*}
$$

Then there exists unique vector field $\nabla_{X} Y$ satisfying

$$
\left\langle\nabla_{X} Y, Z\right\rangle=C(X, Y, Z)
$$

This is the desired one.
Definition 5.2. The map ∇ in Lemma 5.1 is called the Riemannian connection or the Levi-Civita connection.

Lemma 5.3. The Levi-Civita connection satisfies

- $\nabla_{f X} Y=f \nabla_{X} Y$,
- $\nabla_{X}(f Y)=f \nabla_{X} Y+(X f) Y$
for all $X, Y \in \mathfrak{X}(M)$ and $f \in \mathcal{F}(M)$.
Proof. Lemma 4.2 and the equation (5.1) yields the conclusion.
Corollary 5.4. Assume $X, Y \in \mathfrak{X}(M)$ satisfy $X_{p}=Y_{p}$ at a point $p \in M$. Then

$$
\left(\nabla_{X} Z\right)_{p}=\left(\nabla_{Y} Z\right)_{p}
$$

holds for each $Z \in \mathfrak{X}(M)$.
Proof. Take an $n=\operatorname{dim} M$-tuple of vector fields $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ on a domain $U \subset M$ which gives a basis of $T_{p} M$ for each point $p \in U$. Then a vector field X is expressed as

$$
X=\sum_{j=1}^{n} X^{j} \boldsymbol{e}_{j} \quad \text { and } \quad Y=\sum_{j=1}^{n} Y^{j} \boldsymbol{e}_{j}
$$

where X^{j} and Y^{j} are smooth functions satisfying $X^{j}(p)=Y^{j}(p)(j=1, \ldots, n)$. Then by the first assertion of Lemma 5.3, we have

$$
\left(\nabla_{X} Z\right)_{p}=\sum_{j=1}^{n} X^{j}(p)\left(\nabla_{\boldsymbol{e}_{j}} Z\right)_{p}=\sum_{j=1}^{n} Y^{j}(p)\left(\nabla_{\boldsymbol{e}_{j}} Z\right)_{p}=\left(\nabla_{Y} Z\right)_{p}
$$

Definition 5.5. For $\boldsymbol{x} \in T_{p} M$ be a tangent vector at $p \in M$ and a vector field $Y \in \mathfrak{X}(M)$,

$$
\nabla_{\boldsymbol{x}} Y:=\left(\nabla_{X} Y\right)_{p} \in T_{p} M
$$

is called the covariant derivative of Y with respect to the direction \boldsymbol{x}, where $X \in \mathfrak{X}(M)$ is a vector field satisfying $X_{p}=\boldsymbol{x}$.
23. May, 2023. 30. May, 2023

Examples

Example 5.6. Let \mathbb{E}_{r}^{n+r} be the pseudo Euclidean space and \langle,$\rangle the inner product of signature$ (n, r). Then the the canonical connection (cf. (4.4)) D defined by

$$
D: \mathfrak{X}\left(\mathbb{E}_{r}^{n+r}\right) \times \mathfrak{X}\left(\mathbb{E}_{r}^{n+r}\right) \ni(X, Y) \longmapsto D_{X} Y:=d Y(X) \in \mathfrak{X}(M)
$$

c is the Levi-Civita connection, because of Lemma 4.6.
Lemma 5.7. Let $M \subset \mathbb{E}_{r}^{n+r}$ be a submanifold of the pseudo Euclidean space \mathbb{E}_{r}^{n+r}. If the restriction of the inner product \langle,$\rangle of \mathbb{E}_{r}^{n+r}$ on $T_{p} M$ is non-degenerate, the direct sum decomposition

$$
\mathbb{E}_{r}^{n+r}=T_{p} M \oplus\left(T_{p} M\right)^{\perp}, \quad\left(T_{p} M\right)^{\perp}:=\left\{\boldsymbol{v} \in \mathbb{E}_{r}^{n+r} ;\langle\boldsymbol{x}, \boldsymbol{v}\rangle=0 \text { for all } \boldsymbol{x} \in T_{p} M\right\}
$$

that is, for each vector $\boldsymbol{v} \in \mathbb{E}_{r}^{n+r}=T_{p} \mathbb{E}_{r}^{n+r}$, there exists a unique decomposition

$$
\begin{equation*}
\boldsymbol{v}=[\boldsymbol{v}]^{\mathrm{T}}+[\boldsymbol{v}]^{\mathrm{N}}, \quad[\boldsymbol{v}]^{\mathrm{T}} \in T_{p} M, \quad[\boldsymbol{v}]^{\mathrm{N}} \in\left(T_{p} M\right)^{\perp} \tag{5.2}
\end{equation*}
$$

The vectors $[\boldsymbol{v}]^{\mathrm{T}}$ and $[\boldsymbol{v}]^{\mathrm{N}}$ in (5.2) are called the tangential component and normal component of \boldsymbol{v}, respectively.

Proof. By the relationship of rank and kernel, $\operatorname{dim} T_{p} M+\operatorname{dim}\left(T_{p} M\right)^{\perp}=\operatorname{dim} \mathbb{E}_{r}^{n+r}$. Let $\boldsymbol{v} \in$ $T_{p} M \cap\left(T_{p} M\right)^{\perp}$. Since \boldsymbol{v} in $\left(T_{p} M\right)^{\perp},\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0$ for all $\boldsymbol{w} \in T_{p} M$. Here $\boldsymbol{v} \in T_{p} M$ and $\left.\langle\rangle\right|_{,T_{p} M}$ is non-degenerate, $\boldsymbol{v}=\mathbf{0}$. Hence the conclusion follows.

Remark 5.8. When $r=0$, that is, the case that \mathbb{E}^{n} is the Euclidean space, the non-degeneracy assumption of Lemma 5.7 is empty. On the other hand, in \mathbb{E}_{1}^{3}, for example,

$$
M:=\{(u, u, v) ; u, v \in \mathbb{R}\}
$$

does not satisfy the non-degeneracy assumption. In fact, $T_{p} M=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$, where $\boldsymbol{v}_{1}=$ $(1,1,0)^{T}$ and $\boldsymbol{v}_{2}=(0,0,1)^{T}$. Then $\left\langle\boldsymbol{v}_{1}, \boldsymbol{x}\right\rangle=0$ for all $\boldsymbol{x} \in T_{p} M$, that is, $\left.\langle\rangle\right|_{,T_{p} M}$ degenerates. In this case, $\left(T_{p} M\right)^{\perp}=\mathbb{R} \boldsymbol{v}_{1} \subset T_{p} M$.

Theorem 5.9. Let $M \subset \mathbb{E}_{r}^{n+r}$ be a submanifold such that the restriction of the inner product \langle, to $T M$ is non-degenerate. We set $\nabla_{X} Y$ for $X, Y \in \mathfrak{X}(M)$ by

$$
\nabla_{X} Y:=\left[D_{X} Y\right]^{\mathrm{T}}
$$

Then ∇ is the Levi-Civita connection of M with respect to the induced metric $\left.\langle\rangle\right|_{T M$,$} .$
Proof. For X and $Y \in \mathfrak{X}(M),[X, Y] \in \mathfrak{X}(M)$ holds. Hence

$$
\nabla_{X} Y-\nabla_{Y} X=\left[D_{X} Y-D_{Y} X\right]^{\mathrm{T}}=[[X, Y]]^{\mathrm{T}}=[X, Y]
$$

yield the first assertion of Lemma 5.1. On the other hand,

$$
X\langle Y, Z\rangle=\left\langle D_{X} Y, Z\right\rangle+\left\langle Y, D_{X} Z\right\rangle=\left\langle\left[D_{X} Y\right]^{\mathrm{T}}, Z\right\rangle+\left\langle Y,\left[D_{X} Z\right]^{\mathrm{T}}\right\rangle=\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle
$$

Hence ∇ is the Levi-Civita connection.

Exercises

Set

$$
H^{2}(-1)=\left\{\boldsymbol{x}=\left(x^{0}, x^{1}, x^{2}\right)^{T} \in \mathbb{E}_{1}^{3} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1, x^{0}>0\right\}
$$

and take a parametrization

$$
\boldsymbol{f}: D \ni(u, v) \mapsto \frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in H^{2}(-1)
$$

of $H^{2}(-1)$, where $D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}$.
5-1 Let $\left[\boldsymbol{e}_{0}(u, v), \boldsymbol{e}_{1}(u, v), \boldsymbol{e}_{2}(u, v)\right]$ be an orthonormal frame defined by

$$
\boldsymbol{e}_{0}:=\boldsymbol{f}, \quad \boldsymbol{e}_{1}:=\frac{\boldsymbol{f}_{u}}{\left|\boldsymbol{f}_{u}\right|}, \quad \boldsymbol{e}_{2}:=\frac{\boldsymbol{f}_{v}}{\left|\boldsymbol{f}_{v}\right|}
$$

as in Problem 4-1. For the induced connection ∇ of $H^{2}(-1)$,

- Compute $\left\langle\nabla \boldsymbol{e}_{i} \boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle$ for i, j and k run over $\{1,2\}$.
- Compute

$$
\nabla \boldsymbol{e}_{1} \nabla \boldsymbol{e}_{2} \boldsymbol{e}_{2}-\nabla \boldsymbol{e}_{2} \nabla \boldsymbol{e}_{1} \boldsymbol{e}_{2}-\nabla_{\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]} \boldsymbol{e}_{2}
$$

5-2 Let $\widetilde{D}:=(0, \infty) \times(-\pi, \pi)$ and take another parametrization

$$
\widetilde{\boldsymbol{f}}: \widetilde{D} \ni(r, t) \mapsto(\cosh r, \sinh r \cos t, \sinh r \sin t)^{T} \in H^{2}(-1)
$$

of $H^{2}(-1)$, and set

$$
\boldsymbol{v}_{0}=\widetilde{\boldsymbol{f}}, \quad \boldsymbol{v}_{1}=\widetilde{\boldsymbol{f}}_{r}, \quad \boldsymbol{v}_{2}=\frac{1}{\sinh r} \widetilde{\boldsymbol{f}}_{t}
$$

- Find a parameter change $\varphi:(r, t) \mapsto(u, v)=(u(r, t), v(r, t))$.
- Find a 2×2-matrix valued function $\Theta=\Theta(r, t)$ satisfying

$$
\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right] \Theta
$$

where the left-hand side and the right-hand side are valuated at $(u(r, t), v(r, t))$ and (r, t), respectively.

