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5 Riemannian connection

Riemannian connection Let (M, g) be a (pseudo) Riemannian manifold, and denote by 〈 , 〉
the inner product induced by g. We let F(M) and X(M) be the set of smooth functions and
smooth vector fields on M , respectively.
Lemma 5.1. There exists the unique bilinear map

∇ : X(M)× X(M) 3 (X,Y ) 7−→ ∇XY ∈ X(M)

satisfying
• ∇XY −∇YX = [X,Y ],

• X 〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉
for X, Y , Z ∈ X(M), where [ , ] denotes the Lie bracket in Definition 4.1.
Proof. Set

(5.1) C(X,Y, Z) :=
1

2

(
X 〈Y, Z〉+ Y 〈Z,X〉 − Z 〈X,Y 〉 − 〈Y, [X,Z]〉+ 〈X, [Z, Y ]〉 − 〈Z, [Y,X]〉

)
.

Then there exists unique vector field ∇XY satisfying

〈∇XY, Z〉 = C(X,Y, Z).

This is the desired one.

Definition 5.2. The map ∇ in Lemma 5.1 is called the Riemannian connection or the Levi-Civita
connection.

Lemma 5.3. The Levi-Civita connection satisfies
• ∇fXY = f∇XY ,

• ∇X(fY ) = f∇XY + (Xf)Y

for all X, Y ∈ X(M) and f ∈ F(M).
Proof. Lemma 4.2 and the equation (5.1) yields the conclusion.

Corollary 5.4. Assume X, Y ∈ X(M) satisfy Xp = Yp at a point p ∈M . Then

(∇XZ)p = (∇Y Z)p

holds for each Z ∈ X(M).
Proof. Take an n = dimM -tuple of vector fields [e1, . . . , en] on a domain U ⊂ M which gives a
basis of TpM for each point p ∈ U . Then a vector field X is expressed as

X =

n∑
j=1

Xjej and Y =

n∑
j=1

Y jej

where Xj and Y j are smooth functions satisfying Xj(p) = Y j(p) (j = 1, . . . , n). Then by the first
assertion of Lemma 5.3, we have

(∇XZ)p =

n∑
j=1

Xj(p)(∇ejZ)p =

n∑
j=1

Y j(p)(∇ejZ)p = (∇Y Z)p.

Definition 5.5. For x ∈ TpM be a tangent vector at p ∈M and a vector field Y ∈ X(M),

∇xY := (∇XY )p ∈ TpM

is called the covariant derivative of Y with respect to the direction x, where X ∈ X(M) is a vector
field satisfying Xp = x.
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Examples

Example 5.6. Let En+rr be the pseudo Euclidean space and 〈 , 〉 the inner product of signature
(n, r). Then the the canonical connection (cf. (4.4)) D defined by

D : X(En+rr )× X(En+rr ) 3 (X,Y ) 7−→ DXY := dY (X) ∈ X(M)

c is the Levi-Civita connection, because of Lemma 4.6.

Lemma 5.7. Let M ⊂ En+rr be a submanifold of the pseudo Euclidean space En+rr . If the restriction
of the inner product 〈 , 〉 of En+rr on TpM is non-degenerate, the direct sum decomposition

En+rr = TpM ⊕ (TpM)⊥, (TpM)⊥ := {v ∈ En+rr ; 〈x,v〉 = 0 for all x ∈ TpM},

that is, for each vector v ∈ En+rr = TpEn+rr , there exists a unique decomposition

(5.2) v = [v]
T
+ [v]

N
, [v]

T ∈ TpM, [v]
N ∈ (TpM)⊥.

The vectors [v]
T and [v]

N in (5.2) are called the tangential component and normal component
of v, respectively.

Proof. By the relationship of rank and kernel, dimTpM + dim(TpM)⊥ = dimEn+rr . Let v ∈
TpM ∩ (TpM)⊥. Since v in (TpM)⊥, 〈v,w〉 = 0 for all w ∈ TpM . Here v ∈ TpM and 〈 , 〉 |TpM is
non-degenerate, v = 0. Hence the conclusion follows.

Remark 5.8. When r = 0, that is, the case that En is the Euclidean space, the non-degeneracy
assumption of Lemma 5.7 is empty. On the other hand, in E3

1, for example,

M := {(u, u, v) ; u, v ∈ R}

does not satisfy the non-degeneracy assumption. In fact, TpM = Span{v1,v2}, where v1 =
(1, 1, 0)T and v2 = (0, 0, 1)T . Then 〈v1,x〉 = 0 for all x ∈ TpM , that is, 〈 , 〉 |TpM degenerates. In
this case, (TpM)⊥ = Rv1 ⊂ TpM .

Theorem 5.9. Let M ⊂ En+rr be a submanifold such that the restriction of the inner product 〈 , 〉
to TM is non-degenerate. We set ∇XY for X, Y ∈ X(M) by

∇XY := [DXY ]
T
.

Then ∇ is the Levi-Civita connection of M with respect to the induced metric 〈 , 〉 |TM .

Proof. For X and Y ∈ X(M), [X,Y ] ∈ X(M) holds. Hence

∇XY −∇YX = [DXY −DYX]
T
= [[X,Y ]]

T
= [X,Y ]

yield the first assertion of Lemma 5.1. On the other hand,

X 〈Y, Z〉 = 〈DXY, Z〉+ 〈Y,DXZ〉 =
〈
[DXY ]

T
, Z
〉
+
〈
Y, [DXZ]

T
〉
= 〈∇XY, Z〉+ 〈Y,∇XZ〉 .

Hence ∇ is the Levi-Civita connection.
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Exercises

Set
H2(−1) = {x = (x0, x1, x2)T ∈ E3

1 ; 〈x,x〉 = −1, x0 > 0},

and take a parametrization

f : D 3 (u, v) 7→ 1

1− u2 − v2
(
1 + u2 + v2, 2u, 2v

)
∈ H2(−1)

of H2(−1), where D := {(u, v) ∈ R2 ; u2 + v2 < 1}.

5-1 Let [e0(u, v), e1(u, v), e2(u, v)] be an orthonormal frame defined by

e0 := f , e1 :=
fu
|fu|

, e2 :=
fv
|fv|

,

as in Problem 4-1. For the induced connection ∇ of H2(−1),

• Compute 〈∇eiej , ek〉 for i, j and k run over {1, 2}.
• Compute

∇e1
∇e2

e2 −∇e2
∇e1

e2 −∇[e1,e2]e2.

5-2 Let D̃ := (0,∞)× (−π, π) and take another parametrization

f̃ : D̃ 3 (r, t) 7→ (cosh r, sinh r cos t, sinh r sin t)T ∈ H2(−1)

of H2(−1), and set
v0 = f̃ , v1 = f̃r, v2 =

1

sinh r
f̃ t.

• Find a parameter change ϕ : (r, t) 7→ (u, v) =
(
u(r, t), v(r, t)

)
.

• Find a 2× 2-matrix valued function Θ = Θ(r, t) satisfying

[e1, e2] = [v1,v2]Θ,

where the left-hand side and the right-hand side are valuated at (u(r, t), v(r, t)) and
(r, t), respectively.


