6 Geodesics

Let (M, g) be an n-dimensional pseudo Riemannian manifold, and denote by ∇ the Levi-Civita connection.

Pregeodesics and geodesics For a smooth curve $\gamma: I \rightarrow M$ defined on an interval $I \subset \mathbb{R}$, the velocity $\dot{\gamma}$ and the acceleration $\nabla_{\dot{\gamma}} \dot{\gamma}$ are defined.

Definition 6.1. A curve $\gamma=\gamma(t)$ is called a pregeodesic if $\nabla_{\dot{\gamma}} \dot{\gamma}$ is parallel to $\dot{\gamma}$, that is, there exists a smooth function $\varphi(t)$ in t such that $\nabla_{\dot{\gamma}} \dot{\gamma}=\varphi \dot{\gamma}$.

Remark 6.2. A notion of pregeodesic does not depend on a choice of parameter of the curve. In fact, let $\gamma(t)$ be a curve on M, and $t=t(s)$ a parameter change, that is a smooth function in s with $d t / d s>0$ everywhere. Then the parameter change $\tilde{\gamma}(s):=\gamma(t(s))$ of γ satisfies

$$
\begin{align*}
\gamma^{\prime} & :=\frac{d \tilde{\gamma}}{d s}=\frac{d t}{d s} \frac{d \gamma}{d t}=\frac{d t}{d s} \dot{\gamma} \\
\nabla_{\gamma^{\prime}} \gamma^{\prime} & =\nabla_{\gamma^{\prime}} \frac{d t}{d s} \dot{\gamma}=\frac{d^{2} t}{d s^{2}} \dot{\gamma}+\frac{d t}{d s} \nabla_{\frac{d t}{d s}} \dot{\gamma} \tag{6.1}\\
\dot{\gamma} & =\frac{d^{2} t}{d s^{2}} \dot{\gamma}+\left(\frac{d t}{d s}\right)^{2} \nabla_{\dot{\gamma}} \dot{\gamma} .
\end{align*}
$$

Hence $\nabla_{\gamma^{\prime}} \gamma^{\prime}$ is proportional to γ^{\prime} if and only if $\nabla_{\dot{\gamma}} \dot{\gamma}$ is proportional to $\dot{\gamma}$.
Definition 6.3. A curve γ is called a geodesic if $\nabla_{\dot{\gamma}} \dot{\gamma}=\mathbf{0}$ holds identically.

Lemma 6.4. If γ is a geodesic, then $\langle\dot{\gamma}, \dot{\gamma}\rangle$ is constant.
Proof. By the definition of the Levi-Civita connection (Definition 5.2),

$$
\frac{d}{d t}\langle\dot{\gamma}, \dot{\gamma}\rangle=2\left\langle\nabla_{\dot{\gamma}} \dot{\gamma}, \dot{\gamma}\right\rangle=0
$$

Hence $\langle\dot{\gamma}, \dot{\gamma}\rangle=0$.
Remark 6.5. By virtue of Lemma 6.4, the notion of geodesics does depend on parameters, unlike the pregeodesics.

By definition, a geodesic is a pregeodesic. Though the converse is not true in general, a pregeodesic coincides a geodesic up to a parameter change.

Lemma 6.6. Let $\gamma: I \ni t \mapsto \gamma(t) \in M$ be a geodesic, where $I \subset \mathbb{R}$ is an interval. Then there exists a parameter change $t=t(s)$ such that $\tilde{\gamma}(s)=\gamma(t(s))$ is a geodesic.

Proof. Take a function $\varphi: I \rightarrow \mathbb{R}$ such that $\nabla_{\dot{\gamma}} \dot{\gamma}=\varphi \dot{\gamma}$. We define a function $s: I \rightarrow \mathbb{R}$ by

$$
s(t):=\int_{t_{0}}^{t}\left(\exp \int_{t_{0}}^{u} \varphi(\tau) d \tau\right) d u
$$

where $t_{0} \in I$ is an arbitrarily fixed point. Since $d s / d t>0$ holds everywhere, $s: I \mapsto I^{\prime}:=s(I)$ is a diffeomorphism and the inverse $t=t(s)$ exists. Since

$$
\frac{d t}{d s}=\frac{1}{d s / d t}=\exp \left(-\int_{t_{0}}^{t} \varphi(u) d u\right)
$$

(6.1) yields $\nabla_{\gamma^{\prime}} \gamma^{\prime}=\mathbf{0}$, where $^{\prime}=d / d s$.
30. May, 2023.

Example 6.7. Let $M \subset \mathbb{E}^{3}$ be a 2-dimensional submanifold of the Euclidean space, and take the unit normal vector field ν along M. Since the tangent space $T_{p} M$ is the orthogonal complement of $\nu(p)$ for all $p \in M$,

$$
\nabla_{\dot{\gamma}} \dot{\gamma}=[\ddot{\gamma}]^{\mathrm{T}}=\ddot{\gamma}-\langle\ddot{\gamma}, \nu\rangle \nu
$$

holds for a curve γ on M. Then the curve γ is a pregeodesic if and only if $\ddot{\gamma}$ is linearly dependent to $\{\dot{\gamma}, \nu\}$, that is,

$$
\operatorname{det}(\dot{\gamma}, \ddot{\gamma}, \hat{\nu})=0
$$

holds, where $\hat{\nu}(t)=\nu \circ \gamma(t)$ is the unit normal vector field of the surface M along the curve γ.

Existence and Uniqueness

Fact 6.8. For each $p \in M$ and $\boldsymbol{v} \in T_{p} M$, there exists unique geodesic $\gamma_{p, \boldsymbol{v}}: I \rightarrow M$, where I is an interval including 0 such that $\gamma(0)=p$ and $\dot{\gamma}(0)=\boldsymbol{v}$.

Remark 6.9. Fact 6.8 can be proven by the fundamental theorem for ordinary differential equations, because the equation $\nabla_{\dot{\gamma}} \dot{\gamma}=0$ is a system of ordinary differential equation of the coordinate functions of $\gamma(t)$ on a coordinate neighborhood. A brief review of theory of ordinary differential equations will be given in lectures on next quarter.

For each $p \in M$ and $\boldsymbol{v} \in T_{p} M$, we denote by $\gamma_{p, \boldsymbol{v}}$ the geodesic with

$$
\gamma_{p, \boldsymbol{v}}(0)=p, \quad \dot{\gamma}_{p, \boldsymbol{v}}(0)=\boldsymbol{v}
$$

Proposition 6.10. For arbitrary constant k, $\gamma_{p, k \boldsymbol{v}}(t)=\gamma_{p, \boldsymbol{v}}(k t)$ holds.
Proof. Let $\gamma(t)=\gamma_{p, \boldsymbol{v}}(k t)$. Then $\dot{\gamma}(t)=k \dot{\gamma}_{p, \boldsymbol{v}}(k t)$, and $\nabla_{\dot{\gamma}} \dot{\gamma}=k^{2} \nabla_{\dot{\gamma}_{p}, \boldsymbol{v}} \gamma_{p, \boldsymbol{v}}$. Hence $\gamma(t)$ is a geodesic. Moreover, by definition, $\gamma(0)=p$ and $\dot{\gamma}(0)=k \boldsymbol{v}$. Hence $\gamma_{p, k \boldsymbol{v}}=\gamma$ by the uniqueness.

Example 6.11. Let $k>0$ be a constant and

$$
S^{n}(k):=\left\{\boldsymbol{x} \in \mathbb{E}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=\frac{1}{k}\right\}
$$

be the n-dimensional sphere of curvature k. Since for each $\boldsymbol{x} \in S^{n}(k), T_{\boldsymbol{x}} S^{n}(k)=\boldsymbol{x}^{\perp}$ holds. For given $\boldsymbol{x} \in S^{n}(k)$ and $\boldsymbol{v} \in T_{\boldsymbol{x}} S^{n}(k) \backslash\{\mathbf{0}\}$, we set

$$
\gamma(t):=(\cos \sqrt{k} v t) \boldsymbol{x}+(\sin \sqrt{k} v t) \boldsymbol{v}^{\prime} \quad\left(v=\langle\boldsymbol{v}, \boldsymbol{v}\rangle^{1 / 2}, \quad \boldsymbol{v}^{\prime}:=\frac{\boldsymbol{v}}{\sqrt{k} v}\right)
$$

Since $\ddot{\gamma}(t)$ is proportional to $\gamma(t), \nabla_{\dot{\gamma}} \dot{\gamma}=\mathbf{0}$. Hence γ is a geodesic with $\gamma(0)=\boldsymbol{x}, \dot{\gamma}(0)=\boldsymbol{v}$.

Completeness

Definition 6.12. A pseudo Riemannian manifold (M, g) is said to be complete if all geodesics are defined on whole on \mathbb{R}.

Properties of complete Riemannian manifolds will be treated in the next lecture.

Exercises

6-1 Let

$$
\boldsymbol{f}: D=(0, \infty) \times(-\pi, \pi) \ni(r, t) \mapsto(\cosh r, \sinh r \cos t, \sinh r \sin t)^{T} \in H^{2}(-1)
$$

be a parametrization in $H^{2}(-1)$ as in Problem 5-2. Show that $\gamma(r): r \mapsto \boldsymbol{f}(r, t) \in H^{2}(-1)$ is a geodesic for each fixed value t.

6-2 Let

$$
S_{1}^{2}:=\left\{\boldsymbol{x} \in \mathbb{E}_{1}^{3} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=1\right\}
$$

which is called the de Sitter plane. Then the restriction of the inner product of the LorentzMinkowski space \mathbb{E}_{1}^{3} to the tangent space $T_{\boldsymbol{x}} S_{1}^{3}=\boldsymbol{x}^{\perp}$ is of $\operatorname{sign}(1,1)$, that is, S_{1}^{2} is a Lorentzian manifold. For each $\boldsymbol{x} \in S_{1}^{2}$ and $\boldsymbol{v} \in T_{\boldsymbol{x}} S_{1}^{2} \backslash\{0\}$, we set

$$
\gamma_{\boldsymbol{x}, \boldsymbol{v}}(t):= \begin{cases}(\cosh v t) \boldsymbol{x}+(\sinh v t) \boldsymbol{v}^{\prime} & \text { if }\langle\boldsymbol{v}, \boldsymbol{v}\rangle<0 \\ \boldsymbol{x}+t \boldsymbol{v} & \text { if }\langle\boldsymbol{v}, \boldsymbol{v}\rangle=0 \\ (\cos v t) \boldsymbol{x}+(\sin v t) \boldsymbol{v}^{\prime} & \text { if }\langle\boldsymbol{v}, \boldsymbol{v}\rangle>0\end{cases}
$$

where $v:=|\langle\boldsymbol{v}, \boldsymbol{v}\rangle|^{1 / 2}$ and $\boldsymbol{v}^{\prime}:=\boldsymbol{v} / v$. Show that $\gamma:=\gamma_{\boldsymbol{x}, \boldsymbol{v}}$ is a geodesic on S_{1}^{3} with $\gamma(0)=\boldsymbol{x}$ and $\dot{\gamma}(0)=\boldsymbol{v}$.

