
MTH.B505; Sect. 6 20

6 Geodesics

Let (M, g) be an n-dimensional pseudo Riemannian manifold, and denote by ∇ the Levi-Civita
connection.

Pregeodesics and geodesics For a smooth curve γ : I →M defined on an interval I ⊂ R, the
velocity γ̇ and the acceleration ∇γ̇ γ̇ are defined.

Definition 6.1. A curve γ = γ(t) is called a pregeodesic if ∇γ̇ γ̇ is parallel to γ̇, that is, there
exists a smooth function ϕ(t) in t such that ∇γ̇ γ̇ = ϕγ̇.

Remark 6.2. A notion of pregeodesic does not depend on a choice of parameter of the curve. In
fact, let γ(t) be a curve on M , and t = t(s) a parameter change, that is a smooth function in s
with dt/ds > 0 everywhere. Then the parameter change γ̃(s) := γ(t(s)) of γ satisfies
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Hence ∇γ′γ′ is proportional to γ′ if and only if ∇γ̇ γ̇ is proportional to γ̇.

Definition 6.3. A curve γ is called a geodesic if ∇γ̇ γ̇ = 0 holds identically.

Lemma 6.4. If γ is a geodesic, then 〈γ̇, γ̇〉 is constant.

Proof. By the definition of the Levi-Civita connection (Definition 5.2),

d

dt
〈γ̇, γ̇〉 = 2 〈∇γ̇ γ̇, γ̇〉 = 0.

Hence 〈γ̇, γ̇〉 = 0.

Remark 6.5. By virtue of Lemma 6.4, the notion of geodesics does depend on parameters, unlike
the pregeodesics.

By definition, a geodesic is a pregeodesic. Though the converse is not true in general, a
pregeodesic coincides a geodesic up to a parameter change.

Lemma 6.6. Let γ : I 3 t 7→ γ(t) ∈ M be a geodesic, where I ⊂ R is an interval. Then there
exists a parameter change t = t(s) such that γ̃(s) = γ(t(s)) is a geodesic.

Proof. Take a function ϕ : I → R such that ∇γ̇ γ̇ = ϕγ̇. We define a function s : I → R by

s(t) :=

∫ t

t0

(
exp

∫ u

t0

ϕ(τ) dτ

)
du,

where t0 ∈ I is an arbitrarily fixed point. Since ds/dt > 0 holds everywhere, s : I 7→ I ′ := s(I) is
a diffeomorphism and the inverse t = t(s) exists. Since

dt

ds
=

1

ds/dt
= exp

(
−
∫ t

t0

ϕ(u) du

)
,

(6.1) yields ∇γ′γ′ = 0, where ′ = d/ds.
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Example 6.7. Let M ⊂ E3 be a 2-dimensional submanifold of the Euclidean space, and take the
unit normal vector field ν along M . Since the tangent space TpM is the orthogonal complement
of ν(p) for all p ∈M ,

∇γ̇ γ̇ = [γ̈]
T
= γ̈ − 〈γ̈, ν〉 ν

holds for a curve γ on M . Then the curve γ is a pregeodesic if and only if γ̈ is linearly dependent
to {γ̇, ν}, that is,

det(γ̇, γ̈, ν̂) = 0

holds, where ν̂(t) = ν ◦ γ(t) is the unit normal vector field of the surface M along the curve γ.

Existence and Uniqueness

Fact 6.8. For each p ∈ M and v ∈ TpM , there exists unique geodesic γp,v : I → M , where I is
an interval including 0 such that γ(0) = p and γ̇(0) = v.

Remark 6.9. Fact 6.8 can be proven by the fundamental theorem for ordinary differential equations,
because the equation ∇γ̇ γ̇ = 0 is a system of ordinary differential equation of the coordinate
functions of γ(t) on a coordinate neighborhood. A brief review of theory of ordinary differential
equations will be given in lectures on next quarter.

For each p ∈M and v ∈ TpM , we denote by γp,v the geodesic with

γp,v(0) = p, γ̇p,v(0) = v.

Proposition 6.10. For arbitrary constant k, γp,kv(t) = γp,v(kt) holds.

Proof. Let γ(t) = γp,v(kt). Then γ̇(t) = kγ̇p,v(kt), and ∇γ̇ γ̇ = k2∇γ̇p,vγp,v. Hence γ(t) is a
geodesic. Moreover, by definition, γ(0) = p and γ̇(0) = kv. Hence γp,kv = γ by the uniqueness.

Example 6.11. Let k > 0 be a constant and

Sn(k) :=

{
x ∈ En+1 ; 〈x,x〉 = 1

k

}
be the n-dimensional sphere of curvature k. Since for each x ∈ Sn(k), TxSn(k) = x⊥ holds. For
given x ∈ Sn(k) and v ∈ TxS

n(k) \ {0}, we set

γ(t) := (cos
√
kvt)x+ (sin

√
kvt)v′

(
v = 〈v,v〉1/2 , v′ :=

v√
kv

)
.

Since γ̈(t) is proportional to γ(t), ∇γ̇ γ̇ = 0. Hence γ is a geodesic with γ(0) = x, γ̇(0) = v.

Completeness

Definition 6.12. A pseudo Riemannian manifold (M, g) is said to be complete if all geodesics are
defined on whole on R.

Properties of complete Riemannian manifolds will be treated in the next lecture.
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Exercises

6-1 Let

f : D = (0,∞)× (−π, π) 3 (r, t) 7→ (cosh r, sinh r cos t, sinh r sin t)T ∈ H2(−1)

be a parametrization in H2(−1) as in Problem 5-2. Show that γ(r) : r 7→ f(r, t) ∈ H2(−1)
is a geodesic for each fixed value t.

6-2 Let
S2
1 := {x ∈ E3

1 ; 〈x,x〉 = 1},

which is called the de Sitter plane. Then the restriction of the inner product of the Lorentz-
Minkowski space E3

1 to the tangent space TxS
3
1 = x⊥ is of sign (1, 1), that is, S2

1 is a
Lorentzian manifold. For each x ∈ S2

1 and v ∈ TxS
2
1 \ {0}, we set

γx,v(t) :=


(cosh vt)x+ (sinh vt)v′ if 〈v,v〉 < 0,

x+ tv if 〈v,v〉 = 0,

(cos vt)x+ (sin vt)v′ if 〈v,v〉 > 0,

where v := | 〈v,v〉 |1/2 and v′ := v/v. Show that γ := γx,v is a geodesic on S3
1 with γ(0) = x

and γ̇(0) = v.


