6 Geodesics

Let (M, g) be an *n*-dimensional pseudo Riemannian manifold, and denote by ∇ the Levi-Civita connection.

Pregeodesics and geodesics For a smooth curve $\gamma: I \to M$ defined on an interval $I \subset \mathbb{R}$, the velocity $\dot{\gamma}$ and the acceleration $\nabla_{\dot{\gamma}}\dot{\gamma}$ are defined.

Definition 6.1. A curve $\gamma = \gamma(t)$ is called a *pregeodesic* if $\nabla_{\dot{\gamma}}\dot{\gamma}$ is parallel to $\dot{\gamma}$, that is, there exists a smooth function $\varphi(t)$ in t such that $\nabla_{\dot{\gamma}}\dot{\gamma} = \varphi\dot{\gamma}$.

Remark 6.2. A notion of pregeodesic does not depend on a choice of parameter of the curve. In fact, let $\gamma(t)$ be a curve on M, and t = t(s) a parameter change, that is a smooth function in s with dt/ds > 0 everywhere. Then the parameter change $\tilde{\gamma}(s) := \gamma(t(s))$ of γ satisfies

(6.1)

$$\gamma' := \frac{d\tilde{\gamma}}{ds} = \frac{dt}{ds}\frac{d\gamma}{dt} = \frac{dt}{ds}\dot{\gamma},$$

$$\nabla_{\gamma'}\gamma' = \nabla_{\gamma'}\frac{dt}{ds}\dot{\gamma} = \frac{d^2t}{ds^2}\dot{\gamma} + \frac{dt}{ds}\nabla_{\frac{dt}{ds}}\dot{\gamma}\dot{\gamma} = \frac{d^2t}{ds^2}\dot{\gamma} + \left(\frac{dt}{ds}\right)^2\nabla_{\dot{\gamma}}\dot{\gamma}.$$

Hence $\nabla_{\gamma'}\gamma'$ is proportional to γ' if and only if $\nabla_{\dot{\gamma}}\dot{\gamma}$ is proportional to $\dot{\gamma}$.

Definition 6.3. A curve γ is called a *geodesic* if $\nabla_{\dot{\gamma}}\dot{\gamma} = \mathbf{0}$ holds identically.

Lemma 6.4. If γ is a geodesic, then $\langle \dot{\gamma}, \dot{\gamma} \rangle$ is constant.

Proof. By the definition of the Levi-Civita connection (Definition 5.2),

$$\frac{d}{dt}\left\langle \dot{\gamma},\dot{\gamma}\right\rangle = 2\left\langle \nabla_{\dot{\gamma}}\dot{\gamma},\dot{\gamma}\right\rangle = 0.$$

Hence $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0.$

Remark 6.5. By virtue of Lemma 6.4, the notion of geodesics *does* depend on parameters, unlike the pregeodesics.

By definition, a geodesic is a pregeodesic. Though the converse is not true in general, a pregeodesic coincides a geodesic up to a parameter change.

Lemma 6.6. Let $\gamma: I \ni t \mapsto \gamma(t) \in M$ be a geodesic, where $I \subset \mathbb{R}$ is an interval. Then there exists a parameter change t = t(s) such that $\tilde{\gamma}(s) = \gamma(t(s))$ is a geodesic.

Proof. Take a function $\varphi \colon I \to \mathbb{R}$ such that $\nabla_{\dot{\gamma}} \dot{\gamma} = \varphi \dot{\gamma}$. We define a function $s \colon I \to \mathbb{R}$ by

$$s(t) := \int_{t_0}^t \left(\exp \int_{t_0}^u \varphi(\tau) \, d\tau \right) \, du,$$

where $t_0 \in I$ is an arbitrarily fixed point. Since ds/dt > 0 holds everywhere, $s: I \mapsto I' := s(I)$ is a diffeomorphism and the inverse t = t(s) exists. Since

$$\frac{dt}{ds} = \frac{1}{ds/dt} = \exp\left(-\int_{t_0}^t \varphi(u) \, du\right),\,$$

(6.1) yields $\nabla_{\gamma'} \gamma' = \mathbf{0}$, where ' = d/ds.

^{30.} May, 2023.

Example 6.7. Let $M \subset \mathbb{E}^3$ be a 2-dimensional submanifold of the Euclidean space, and take the unit normal vector field ν along M. Since the tangent space T_pM is the orthogonal complement of $\nu(p)$ for all $p \in M$,

$$abla_{\dot{\gamma}}\dot{\gamma} = \left[\ddot{\gamma}
ight]^{\mathrm{T}} = \ddot{\gamma} - \left<\ddot{\gamma},
u\right>
u$$

holds for a curve γ on M. Then the curve γ is a pregeodesic if and only if $\ddot{\gamma}$ is linearly dependent to $\{\dot{\gamma}, \nu\}$, that is,

$$\det(\dot{\gamma}, \ddot{\gamma}, \hat{\nu}) = 0$$

holds, where $\hat{\nu}(t) = \nu \circ \gamma(t)$ is the unit normal vector field of the surface M along the curve γ .

Existence and Uniqueness

Fact 6.8. For each $p \in M$ and $\boldsymbol{v} \in T_pM$, there exists unique geodesic $\gamma_{p,\boldsymbol{v}} \colon I \to M$, where I is an interval including 0 such that $\gamma(0) = p$ and $\dot{\gamma}(0) = \boldsymbol{v}$.

Remark 6.9. Fact 6.8 can be proven by the fundamental theorem for ordinary differential equations, because the equation $\nabla_{\dot{\gamma}}\dot{\gamma} = 0$ is a system of ordinary differential equation of the coordinate functions of $\gamma(t)$ on a coordinate neighborhood. A brief review of theory of ordinary differential equations will be given in lectures on next quarter.

For each $p \in M$ and $v \in T_p M$, we denote by $\gamma_{p,v}$ the geodesic with

$$\gamma_{p,\boldsymbol{v}}(0) = p, \qquad \dot{\gamma}_{p,\boldsymbol{v}}(0) = \boldsymbol{v}$$

Proposition 6.10. For arbitrary constant k, $\gamma_{p,kv}(t) = \gamma_{p,v}(kt)$ holds.

Proof. Let $\gamma(t) = \gamma_{p,\boldsymbol{v}}(kt)$. Then $\dot{\gamma}(t) = k\dot{\gamma}_{p,\boldsymbol{v}}(kt)$, and $\nabla_{\dot{\gamma}}\dot{\gamma} = k^2 \nabla_{\dot{\gamma}_{p,\boldsymbol{v}}} \gamma_{p,\boldsymbol{v}}$. Hence $\gamma(t)$ is a geodesic. Moreover, by definition, $\gamma(0) = p$ and $\dot{\gamma}(0) = k\boldsymbol{v}$. Hence $\gamma_{p,k\boldsymbol{v}} = \gamma$ by the uniqueness. \Box

Example 6.11. Let k > 0 be a constant and

$$S^n(k) := \left\{ oldsymbol{x} \in \mathbb{E}^{n+1} \, ; \, \langle oldsymbol{x}, oldsymbol{x}
angle = rac{1}{k}
ight\}$$

be the *n*-dimensional sphere of curvature k. Since for each $\boldsymbol{x} \in S^n(k)$, $T_{\boldsymbol{x}}S^n(k) = \boldsymbol{x}^{\perp}$ holds. For given $\boldsymbol{x} \in S^n(k)$ and $\boldsymbol{v} \in T_{\boldsymbol{x}}S^n(k) \setminus \{\mathbf{0}\}$, we set

$$\gamma(t) := (\cos \sqrt{k}vt)\boldsymbol{x} + (\sin \sqrt{k}vt)\boldsymbol{v}' \qquad \left(v = \langle \boldsymbol{v}, \boldsymbol{v} \rangle^{1/2}, \quad \boldsymbol{v}' := \frac{\boldsymbol{v}}{\sqrt{k}v}\right).$$

Since $\ddot{\gamma}(t)$ is proportional to $\gamma(t)$, $\nabla_{\dot{\gamma}}\dot{\gamma} = \mathbf{0}$. Hence γ is a geodesic with $\gamma(0) = \mathbf{x}$, $\dot{\gamma}(0) = \mathbf{v}$.

Completeness

Definition 6.12. A pseudo Riemannian manifold (M, g) is said to be *complete* if all geodesics are defined on whole on \mathbb{R} .

Properties of complete *Riemannian* manifolds will be treated in the next lecture.

Exercises

6-1 Let

$$\boldsymbol{f}: D = (0, \infty) \times (-\pi, \pi) \ni (r, t) \mapsto (\cosh r, \sinh r \cos t, \sinh r \sin t)^T \in H^2(-1)$$

be a parametrization in $H^2(-1)$ as in Problem 5-2. Show that $\gamma(r): r \mapsto f(r,t) \in H^2(-1)$ is a geodesic for each fixed value t.

6-2 Let

$$S_1^2 := \{ \boldsymbol{x} \in \mathbb{E}_1^3 ; \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 1 \},$$

which is called the *de Sitter plane*. Then the restriction of the inner product of the Lorentz-Minkowski space \mathbb{E}_1^3 to the tangent space $T_{\boldsymbol{x}}S_1^3 = \boldsymbol{x}^{\perp}$ is of sign (1,1), that is, S_1^2 is a Lorentzian manifold. For each $\boldsymbol{x} \in S_1^2$ and $\boldsymbol{v} \in T_{\boldsymbol{x}}S_1^2 \setminus \{0\}$, we set

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := \begin{cases} (\cosh vt)\boldsymbol{x} + (\sinh vt)\boldsymbol{v}' & \text{if } \langle \boldsymbol{v}, \boldsymbol{v} \rangle < 0, \\ \boldsymbol{x} + t\boldsymbol{v} & \text{if } \langle \boldsymbol{v}, \boldsymbol{v} \rangle = 0, \\ (\cos vt)\boldsymbol{x} + (\sin vt)\boldsymbol{v}' & \text{if } \langle \boldsymbol{v}, \boldsymbol{v} \rangle > 0, \end{cases}$$

where $v := |\langle \boldsymbol{v}, \boldsymbol{v} \rangle|^{1/2}$ and $\boldsymbol{v'} := \boldsymbol{v}/v$. Show that $\gamma := \gamma_{\boldsymbol{x}, \boldsymbol{v}}$ is a geodesic on S_1^3 with $\gamma(0) = \boldsymbol{x}$ and $\dot{\gamma}(0) = \boldsymbol{v}$.