7 Hopf-Rinow's theorem

In this section, we assume (M, g) is an n-dimensional connected Riemannian manifold⁶.

Distance

Definition 7.1. Let $\gamma: [a, b] \to M$ be a piecewize C^1 -curve, where [a, b] is a closed interval on \mathbb{R} . The integral

$$\mathcal{L}(\gamma) := \int_{a}^{b} |\dot{\gamma}(t)| \, dt$$

is called the *length* of γ .

Lemma 7.2. For points $p, q \in M$, we denote

$$\mathcal{C}_{p,q} := \left\{ \gamma \colon [a,b] \to M \, ; \, \gamma \text{ is a piecewize } C^1 \text{-curve with } \gamma(a) = p \text{ and } \gamma(b) = q \right\}.$$

Then

$$d(p,q) := \inf \{ \mathcal{L}(\gamma) ; \gamma \in \mathcal{C}_{p,q} \} \colon M \times M \to \mathbb{R}$$

is a distance function on M, that is, it satisfies the axiom

- $d(p,q) \ge 0$ for any $p, q \in M$. The equality holds if and only if p = q.
- d(p,q) = d(q,p).
- $d(p,q) + d(q,r) \ge d(q,r)$

of distance. Moreover, the topology of M induced by the distance d coincides with the original topology of M.

Definition 7.3. The distance function d in Lemma 7.2 is called the *distance induced from the Riemannian metric g*, or the *Riemannian distance with respect to g*.

Proposition 7.4. For $p, q \in M$, a curve $\gamma \in C_{p,q}$ satisfying $d(p,q) = \mathcal{L}(\gamma)$ is a pregeodesic.

Definition 7.5. The geodesic $\gamma \in C_{p,q}$ satisfying $\mathcal{L}(\gamma) = d(p,q)$ is called the *minimizing geodesic* or the *shortest geodesic* joining p and q.

Completeness We denote by $\gamma_{p,\boldsymbol{v}}$ the geodesic on a (pseudo) Riemannian manifold (M, g) starting $p \in M$ with initial velocity $\boldsymbol{v} \in T_p M$. A geodesic $\gamma_{p,\boldsymbol{v}}$ is said to be *complete* if it is defined on whole \mathbb{R} . The manifold (M, g) is said to be *complete* if all geodesics are complete.

Example 7.6. The Euclidean space \mathbb{E}^n is complete. In fact, $\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) = \boldsymbol{x} + t\boldsymbol{v}$ is defined on \mathbb{R} .

Example 7.7. Let k > 0 be a constant and

$$S^n(k) := \left\{ oldsymbol{x} \in \mathbb{E}^{n+1} \, ; \, \langle oldsymbol{x}, oldsymbol{x}
angle = rac{1}{k}
ight\}$$

be the *n*-dimensional sphere of curvature k. Then for each $\boldsymbol{x} \in S^n(k)$ and $\boldsymbol{v} \in T_{\boldsymbol{x}}S^n(k)$,

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := (\cos\sqrt{k}vt)\boldsymbol{x} + (\sin\sqrt{k}vt)\boldsymbol{v}' \qquad \left(v = \langle \boldsymbol{v}, \boldsymbol{v} \rangle^{1/2}, \quad \boldsymbol{v}' := \frac{\boldsymbol{v}}{\sqrt{k}v}\right)$$

is the geodesic defined on \mathbb{R} . Hence $S^n(k)$ is complete.

^{06.} June, 2023. 07. June, 2023

⁶The following properties cannot hold for pseudo Riemannian manifolds in general.

Example 7.8. Let k < 0 be a constant and

$$H^{n}(k) := \left\{ \boldsymbol{x} = (x^{0}, \dots, x^{n+1}) \in \mathbb{E}_{1}^{n+1}; \, \langle \boldsymbol{x}, \boldsymbol{x} \rangle = \frac{1}{k}, x^{0} > 0 \right\}$$

be the *n*-dimensional hyperbolic space of curvature k. Then for each $\boldsymbol{x} \in H^n(k)$ and $\boldsymbol{v} \in T_{\boldsymbol{x}} H^n(k)$,

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := (\cosh \sqrt{-k}vt)\boldsymbol{x} + (\sinh \sqrt{-k}vt)\boldsymbol{v}' \qquad \left(v = \langle \boldsymbol{v}, \boldsymbol{v} \rangle^{1/2}, \quad \boldsymbol{v}' := \frac{\boldsymbol{v}}{\sqrt{k}v}\right)$$

is the geodesic defined on \mathbb{R} . Hence $H^n(k)$ is complete.

Example 7.9. Let k > 0 be a constant and

$$S_1^n(k) := \left\{ oldsymbol{x} \in \mathbb{E}_1^{n+1} \, ; \, \langle oldsymbol{x}, oldsymbol{x}
angle = rac{1}{k}
ight\}$$

be the *n*-dimensional de Sitter space of curvature k, which is a Lorentzian manifold. Then for each $\boldsymbol{x} \in S_1^n(k)$ and $\boldsymbol{v} \in T_{\boldsymbol{x}}S_1^n(k)$,

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := \begin{cases} (\cos\sqrt{k}vt)\boldsymbol{x} + (\sin\sqrt{k}vt)\boldsymbol{v}' & \text{if } \langle v,v\rangle > 0, \\ \boldsymbol{x} + t\boldsymbol{v} & \text{if } \langle v,v\rangle = 0, \\ (\cosh\sqrt{k}vt)\boldsymbol{x} + (\sinh\sqrt{k}vt)\boldsymbol{v}' & \text{if } \langle v,v\rangle < 0, \end{cases}$$

where $v := |\langle \boldsymbol{v}, \boldsymbol{v} \rangle|^{1/2}$, $\boldsymbol{v}' := \frac{\boldsymbol{v}}{\sqrt{kv}}$, is the geodesic defined on \mathbb{R} . Hence $S_1^n(k)$ is complete.

Example 7.10. The open submanifold $M := \mathbb{E}^n \setminus \{0\}$ of the Euclidean space \mathbb{E}^n is not complete. In fact, let $x \in M$ and $v := -x \in \mathbb{E}^n = T_x M$. Then the geodesic

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) = \boldsymbol{x} + t\boldsymbol{v} = (1-t)\boldsymbol{x}$$

is defined only on $(-\infty, 1)$.

Hopf-Rinow's theorem

Theorem 7.11 (Hopf-Rinow's theorem). For a given connected Riemannian manifold (M, g), the following are equivalent:

- (1) (M,g) is complete.
- (2) There exists $p \in M$ such that all geodesics emanating at p are complete.
- (3) (M,d) is a complete distance (metric) space, where d is the distance induced from g.
- (4) Any bounded subset D of M is precompact, that is, the closure of D is compact.
- (5) Any divergent path has infinite length.

Here, a curve $\gamma: [0,a) \to M$ is called divergent path if for all compact set $K \subset M$, there exists T > 0 such that $\gamma([T,a)) \subset M \setminus K$.

Moreover,

Theorem 7.12. Assume (M, g) is a complete connected Riemannian manifold. Then for any p and $q \in M$, there exists the shortest geodesic joining p and q.