Advanced Topics in Geometry F1 (MTH.B506)

Linear Ordinary Differential Equations

Kotaro Yamada kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2023/geom-f1/

Tokyo Institute of Technology

2023/06/13

Linear ordinary differential equations in matrix forms

$$\frac{dX(t)}{dt} = X(t)\Omega(t) + B(t), \qquad X(t_0) = X_0,$$

たの

Preliminaries

Proposition (Prop. 1.8) $(\beta = 0)$ homogenious

Assume two C^{∞} matrix-valued functions X(t) and $\Omega(t)$ satisfy

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = X_0.$$

Then

$$\det X(t) = (\det X_0) \exp \int_{t_0}^t \operatorname{tr} \Omega(\tau) \, d\tau.$$

In particular, if $X_0 \in \mathrm{GL}(n,\mathbb{R})$,then $X(t) \in \mathrm{GL}(n,\mathbb{R})$ for all t.

n×n memsingular matrices (regular)

$$\frac{dX}{dt} = X\Omega ; \frac{d}{dt} \underbrace{dt} X = trace X \frac{dX}{dt}$$

$$= trace (XX)\Omega$$

$$= trace (det X) \cdot id \Omega$$

$$= \underbrace{(det X)}_{to} + trace \Omega(c) det X = trace X \frac{dX}{dt}$$

$$= \underbrace{(det X)}_{to} + \underbrace{(det X)}_{to$$

Preliminaries

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = X_0.$$

Corollary (Cor. 1.9) If $\operatorname{tr}\Omega(t)=0$, then $\det X(t)$ is constant. In particular, if $X_0\in \mathrm{SL}(n,\mathbb{R})$, X is a function valued in $\mathrm{SL}(n,\mathbb{R})$. X e Mn(R); dut X-1/5 c GL (n.R)

special inear group (lie algobre) n×n matrices Lie (SL(n.R)) = n×n matrix with tr=0)

Preliminaries

Advanced Topics in Geometry F1

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = X_0.$$

Proposition (Prop. 1.10)

Assume
$$\Omega^T + \Omega = O$$
.

If $X_0 \in O(n)$ (resp. $X_0 \in SO(n)$),
then $X(t) \in O(n)$ (resp. $X(t) \in SO(n)$) for all t .

• $O(n) = \{X \in f_L(n,R)\}$ $X = XX^T = XX$

• $SO(n) = O(n) \land SU(n,R)$

dut = $X \in f_L(n,R)$
 $X = XX^T = XX$
 $X = X$

Linear ordinary differential equations.

Proposition (Prop. 1.12)

Let $\Omega(t)$ be a C^{∞} -function valued in $\mathrm{M}_n(\mathbb{R})$ defined on an interval I. Then for each $t_0 \in I$, there exists the unique matrix-valued C^{∞} -function $X(t) = X_{t_0,\mathrm{id}}(t)$ such that

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = \mathrm{id}.$$

Linear ordinary differential equations.

Corollary (Cor. 1.13)

There exists the unique matrix-valued C^{∞} -function $X_{t_0,X_0}(t)$ defined on I such that

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \quad X(t_0) = X_0 \quad (X(t) := X_{t_0, X_0}(t))$$

In particular, $X_{t_0,X_0}(t)$ is of class C^{∞} in X_0 and t.

Non-homogenious case

Proposition (Prop. 1.14)

Let $\Omega(t)$ and B(t) be matrix-valued C^{∞} -functions defined on I. Then for each $t_0 \in I$ and $X_0 \in \mathrm{M}_n(\mathbb{R})$, there exists the unique matrix-valued C^{∞} -function defined on I satisfying

$$\frac{dX(t)}{dt} = X(t)\Omega(t) + B(t), \qquad X(t_0) = X_0.$$

Fundamental Theorem

Theorem (Thm. 1.15)

Let I and U be an interval and a domain in \mathbb{R}^m , respectively, and let $\Omega(t, \boldsymbol{\alpha})$ and $B(t, \boldsymbol{\alpha})$ be matrix-valued C^{∞} -functions defined on $I \times U \ (\alpha = (\alpha_1, \dots, \alpha_m))$. Then for each $t_0 \in I$, $\alpha \in U$ and $X_0 \in \mathrm{M}_n(\mathbb{R})$, there exists the unique matrix-valued C^{∞} -function $X(t) = X_{t_0,X_0,\boldsymbol{\alpha}}(t)$ defined on I such that

$$\underbrace{\frac{dX(t)}{dt} = X(t)\Omega(t, \mathbf{Q}) + B(t, \mathbf{Q})}_{\text{total}}, \quad \mathbf{M} - \mathbf{promitiv}$$

Moreover,

$$I \times I \times \mathrm{M}_n(\mathbb{R}) \times U \ni (t, t_0, X_0, \boldsymbol{\alpha}) \mapsto X_{t_0, X_0, \boldsymbol{\alpha}}(t) \in \mathrm{M}_n(\mathbb{R})$$

Application to Space Curves 皮間曲线。麦牛文州

- $\gamma\colon I o \mathbb{R}^3$: a space curve parametrized by the arclength.
- ► @- ~'
- $ightharpoonup \kappa = |e'|$; we assume $\kappa > 0$ (the curvature)
- $ho = e'/\kappa$ (the principal normal)
- $\triangleright (b) = e \times n$ (the binormal)

$$f(t)=(\theta(t) n(t) b(t))$$

 $: I \longrightarrow SO(3)$

Frenct frame (#)

V(t)

Advanced Topics in Geometry F1

Linear Ordinary Differential Equations

5: ardength pavamiter

$$\mathcal{F} := (e, n, b) \colon I \to SO(3) \colon \text{ the Frenet Frame}$$

$$\frac{d\mathcal{F}}{ds} = \mathcal{F}\Omega, \qquad \Omega = \begin{pmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix}.$$

$$\frac{d\mathbf{M}}{ds} = \kappa \mathbf{M}$$

The Fundamental Theorem for Space Curves

Theorem (Thm. 1.17) Let $\kappa(s)$ and $\tau(s)$ be C^∞ -finctions defined on an interval I satisfying $\kappa(s)>0$ on I. Then there exists a space curve $\gamma(s)$ parametrized by arc-length whose curvature and torsion are κ and τ , respectively. Moreover, such a curve is unique up to transformation $x\mapsto Ax+\kappa$ $(A\in\mathrm{SO}(3),\kappa\in\mathbb{R}^3)$ of \mathbb{R}^3 .

Solve
$$\frac{d\mathcal{F}}{ds} = \mathcal{G}\Omega, \quad \overline{\mathcal{F}(s)} = id \quad (x \circ x \circ y)$$

$$\Rightarrow \mathcal{F}: I \longrightarrow SO(3)$$

decompose J = (e n b) in column vectors

(1) = \(\begin{array}{c} \text{\$\pi \ (u) du} \\ \text{\$\pi \} \text{\$\pi \ \text{\$\pi \} \text{\$\pi \} \\ ONL.

Problem (Ex. 1-1)

Find the maximal solution of the initial value problem

$$\frac{dx}{dt} = x(1-x), \qquad x(0) = a,$$

where bis a real number.

Exercise 1-2

Problem (Ex. 1-2)

Find an explicit expression of a space curve $\gamma(s)$ parametrized by the arc-length s, whose curvature κ and torsion τ satisfy

promiter the format.

$$\frac{1}{2} = \frac{1}{1+s^2} + \frac{1}{2} = \frac{1}{2}$$