Advanced Topics in Geometry F1 (MTH.B506)

Linear Ordinary Differential Equations

Kotaro Yamada
kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2023/geom-f1/
Tokyo Institute of Technology
2023/06/13

$x=$ unlown
综变 R^{n} - value

$$
\left(x\left(t_{0}\right)=x_{0}\right)(I \cup P)
$$

Thme $\exists I X(t)$: the sol. of (IVP)

Linear ordinary differential equations in matrix forms

$$
\frac{d X(t)}{d t}=X(t) \Omega(t)+B(t), \quad X\left(t_{0}\right)=X_{0},
$$

X : unthoum, $n \times n-m a t r i x-v a l u e d$.
$\Omega, B:$ matrix-valued dater, C^{∞}, affined m I

Preliminaries

Proposition (Prop. 1.8)

 $\left(Q_{2}=0\right)$ homogeniousAssume two C^{∞} matrix-valued functions $X(t)$ and $\Omega(t)$ satisfy

$$
\frac{d X(t)}{d t}=X(t) \underbrace{\Omega(t)}_{0}, \quad X\left(t_{0}\right)=X_{0} .
$$

Then

In particular, if $X_{0} \in \mathrm{GL}(n, \mathbb{R})$, then $X(t) \in \mathrm{GL}(n, \mathbb{R})$ for all t. $n \times \mathfrak{n}$ momsingulor matumes

$$
\begin{aligned}
& \frac{d X}{d t}=X \Omega ; \quad \text { i } \frac{d}{d t}\left(u+X=\operatorname{thece} \tilde{X} \frac{d X}{d t}\right. \\
& =\operatorname{trac}(\bar{X} X) \Omega \\
& =\text { trace }(\text { dot } X) \cdot i d \Omega \\
& =\operatorname{Crat} X \operatorname{tra} \Omega
\end{aligned}
$$

Preliminaries

$$
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0}
$$

Corollary (Cor. 1.9)

If $\operatorname{tr} \Omega(t)=0$, then $\operatorname{det} X(t)$ is constant. In particular, if
$X_{0} \in \operatorname{SL}(n, \mathbb{R}), X$ is a function valued in $\mathrm{SL}(n, \mathbb{R})$.

$\cdot\left\{x \in \mathcal{M n}_{n}(R) ; \operatorname{det} X=1\right\} \subset G L(n, R)$ special inner gray
(li en dove) $n \times n$ matrices
$\operatorname{Li}(S L(n, R))=\{n \times n$ matrix wist $t r=0\}$

Preliminaries

$$
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0} .
$$

Proposition (Prop. 1.10)
shew-symuntitic
Assume $\Omega^{T}+\Omega=O$.
If $\left.\underline{X_{0} \in O(n)(r e s p . ~} X_{0} \in \mathrm{SO}(n)\right)$, oritugnal then $X(t) \in \mathrm{O}(n)($ resp. $X(t) \in \mathrm{SO}(n))$ for all t.
$-O(n)=\left\{X \in \mathbb{G L}(n-R) ; X X=\frac{X X^{\top}=\lambda t}{\text { dat }= \pm 1}\right.$
$-S O(n)=O(n) S L(n, \mathbb{D})$
$\frac{d}{d t}\left(\frac{X X^{\top}}{\text { and }}\right)=\frac{d X}{d t} X^{\top}+X\left(\frac{d X}{d X}\right)^{\top}=X \Omega X^{\top}+X(X, \Omega)^{\top}$
$X \Omega X^{\top}+X \Omega^{\top} X^{\top}=X\left(\Omega+\Omega^{\top}\right) X^{\top}=0$

Linear ordinary differential equations.

Proposition (Prop. 1.12)

Let $\Omega(t)$ be a C^{∞}-function valued in $\mathrm{M}_{n}(\mathbb{R})$ defined on an interval I. Then for each $t_{0} \in I$, there exists the unique matrix-valued C^{∞}-function $X(t)=X_{t_{0}, \text { id }}(t)$ such that

$$
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=\mathrm{id}
$$

Linear ordinary differential equations.

Corollary (Cor. 1.13)

There exists the unique matrix-valued C^{∞}-function $X_{t_{0}, X_{0}}(t)$ defined on I such that

$$
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0} \quad\left(X(t):=X_{t_{0}, X_{0}}(t)\right)
$$

In particular, $X_{t_{0}, X_{0}}(t)$ is of class C^{∞} in X_{0} and t.

Non-homogenious case

Proposition (Prop. 1.14)

Let $\Omega(t)$ and $B(t)$ be matrix-valued C^{∞}-functions defined on I. Then for each $t_{0} \in I$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function defined on I satisfying

$$
\frac{d X(t)}{d t}=X(t) \Omega(t)+B(t), \quad X\left(t_{0}\right)=X_{0} .
$$

Fundamental Theorem

Theorem (Chm. 1.15)

Let I and U be an interval and a domain in \mathbb{R}^{m}, respectively, and
let $\Omega(t, \boldsymbol{\alpha})$ and $B(t, \boldsymbol{\alpha})$ be matrix-valued C^{∞}-functions defined on
Let I and U be an interval and a domain in \mathbb{R}^{m}, respectively, and
let $\Omega(t, \boldsymbol{\alpha})$ and $B(t, \boldsymbol{\alpha})$ be matrix-valued C^{∞}-functions defined on $I \times U\left(\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right)$. Then for each $t_{0} \in I, \boldsymbol{\alpha} \in U$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function $X(t)=X_{t_{0}, X_{0}, \boldsymbol{\alpha}}(t)$ defined on I such that

$$
\frac{d X(t)}{d t}=X(t) \Omega(t, @)+B(t, @), \quad \begin{align*}
& \text { m- pavaninu } \tag{1}\\
& X\left(t_{0}\right)=X_{0}
\end{align*}
$$

Moreover,

$$
I \times I \times \mathrm{M}_{n}(\mathbb{R}) \times U \ni\left(t, t_{0}, X_{0}, \boldsymbol{\alpha}\right) \mapsto X_{t_{0}, X_{0}, \boldsymbol{\alpha}}(t) \in \mathrm{M}_{n}(\mathbb{R})
$$

parameter d

$$
\begin{aligned}
& \frac{d F}{d s}=F \Omega, \quad \Omega=\left(\begin{array}{ccc}
0 & -k & 0 \\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right) . \\
& \frac{d e}{d s}=\mathrm{km} \quad\left\langle\frac{d m}{d s}, m\right\rangle=\frac{1}{2} \frac{d}{d s}\langle m, m\rangle \\
& \frac{d m}{d s}=-k e+0 n+\tau b \\
& \left\langle\frac{d n}{d s}, e\right\rangle=\frac{d}{d S}\langle m . e\rangle \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rkan }
\end{aligned}
$$

The Fundamental Theorem for Space Curves

Theorem (Thm. 1.17)

Let $\kappa(s)$ and $\tau(s)$ be C^{∞}-fnctions defined on an interval I satisfying $\kappa(s))>0$ on I. ofluen
Then there exists a space curve $\gamma(s)$ parametrized by arc-length whose curvature and torsion are κ and τ, respectively. Moreover, such a curve is unique up to transformation $x \mapsto A \boldsymbol{x}+\boldsymbol{r}\left(A \in \mathrm{SO}(3), \sum_{\omega} \in \mathbb{R}^{3}\right)$ of \mathbb{R}^{3}.

C

Solve

$$
\Rightarrow g: I \longrightarrow S O(3)
$$

\Rightarrow decompose $F=\left(e \quad n \quad b_{0}\right)$ in column vectors
$\Rightarrow \gamma(s)=\int_{S_{0}}^{s} R(u) d u \gamma^{\prime}$ is the desired

Exercise 1-1

Logicstic of.

Problem (Ex. 1-1)

Find the maximal solution of the initial value problem

$$
\frac{d x}{d t}=x(1-x), \quad x(0)=a
$$

where(b) is a real number.

Exercise 1-2

Problem (Ex. 1-2)

Find an explicit expression of a space curve $\gamma(s)$ parametrized by the arc-length s, whose curvature κ and torsion τ satisfy

