Advanced Topics in Geometry F1 (MTH.B506) Space Forms

Kotaro Yamada kotaro@math.titech.ac.jp http://www.math.titech.ac.jp/~kotaro/class/2023/geom-f1/

Tokyo Institute of Technology

2023/07/25

Problem 5-1

Problem

Consider a Riemannian metric

$$\begin{split} g &= dr^2 + \{\varphi(r)\}^2 \, d\theta^2 \\ & \text{on} \qquad U := \{(r,\theta)\,;\, 0 < r < r_0, -\pi < \theta < \pi\}, \end{split}$$

where $r_0 \in (0, +\infty]$ and φ is a positive smooth function defined on $(0, r_0)$ with

$$\lim_{r \to +0} \varphi(r) = 0, \qquad \lim_{r \to +0} \frac{\varphi(r)}{r} = 1.$$

Classify the function φ so that g is of constant sectional curvature.

 $g = dr^2 + i\varphi(r) \int d\theta^2$ $e^{1} = \frac{9}{2}$ $e^{3} = \frac{9}{2}$ $\frac{\kappa_{1}^{2}}{2} = \frac{\varphi^{2}}{2} \omega^{1} \wedge \omega^{2}$ sectional curvature = IK (Qin Qz, Q, n QL) $= -\frac{9}{20} = k$ $\psi(0) = 0$ $\psi(0) = 1$ (k=0) $\varphi^{*}=0$ $\varphi(r)=r$ $f_{r} = dr^{2} + r^{2}d\theta^{2} : the Euclidean$ metreunit kep. tothe prlav coord's.

 $(k = e^2 > 0) \quad \psi'' = -e^2 \psi$ φ(o)-0 φ(o)= r € (0, ≩) 9 = c = Ain RY > 0 the polor coord's m radius C. CT

 $\varphi'' = \frac{\varphi}{c}$: $\varphi \in \sum_{r} | \cos \frac{r}{c} |$ $\left(\ddagger = -\frac{1}{C^2} < 0 \right)$ sh r (0)=D Ý (0)=) c sinh r J. 9 = polor constructed re (o, + oo) L

Problem 5-2

Problem

Let $M \subset \mathbb{R}^{n+1}$ be an embedded submanifold endowed with the Riemannian metric induced from the canonical Euclidean metric of \mathbb{R}^{n+1} . Then the position vector $\boldsymbol{x}(p)$ of $p \in M$ induces

 $\boldsymbol{x} \colon M \ni p \longmapsto \boldsymbol{x}(p) \in \mathbb{R}^{n+1},$

which is an (n + 1)-tuple of C^{∞} -functions. Let $[e_1, \ldots, e_n]$ be an orthonormal frame defined on a domain $U \subset M$. Since $T_pM \subset \mathbb{R}^{n+1}$, we can consider that e_j is a smooth map from $U \to \mathbb{R}^{n+1}$. Take a dual basis (ω^j) to $[e_j]$. Prove that

$$dm{x} = \sum_{j=1}^n m{e}_j \omega^j$$

holds on U.

