Advanced Topics in Geometry F1（MTH．B506） Space Forms安開乼

Kotaro Yamada
kotaro＠math．titech．ac．jp
http：／／www．math．titech．ac．jp／～kotaro／class／2023／geom－f1／
Tokyo Institute of Technology
2023／07／25

Review

- (M, g) : a Riemannian n-manifold $/ / /\langle$,$\rangle : the inner product \mathrm{w}$. r. to g.
- $\left(e_{1}, \ldots, e_{n}\right)$: an orthonormal frame on $U \subset M$.
- $\left(\omega^{1}, \ldots, \omega^{n}\right)$: the dual frame of $\left(e_{j}\right)$:
$\omega^{2}\left(C_{k}\right)=\delta_{n}^{d}$

$$
1 \text { forms } \quad \omega^{j}=\left\langle e_{j}, *\right\rangle
$$

∇ : the Levi-Civita connection on (M, g).

- $\Omega:=\left(\omega_{i}^{j}\right)$: the connection form: .

$$
\nabla\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \Omega
$$

$\nabla \omega_{j}^{k}=\left\langle\nabla \boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle$.

$$
\nabla v_{j}=\sum \cos _{j} \mathrm{O}_{0}
$$

$\wedge K=\left(\kappa_{i}^{j}\right)=d \Omega+\Omega, \Omega_{0}^{0}:$ the curvature form .
$>\kappa_{i}^{j}=d \omega_{i}^{j}+\sum_{l} \omega_{l}^{j} \wedge \omega_{i}^{l}$.

Review

- $\omega_{j}^{k}=-\omega_{k}^{j}, \kappa_{j}^{k}=-\kappa_{k}^{j} \quad$, K: shets symuluc.
- $d \omega^{i}=\sum_{l=1}^{n} \omega^{l} \wedge \omega_{l}^{i}$
$\left.\kappa_{k} \boldsymbol{K}_{k}, e_{k}, \boldsymbol{e}_{l}\right)=\kappa_{l}^{k}\left(e_{i}, e_{j}\right)$.
symuluc

$$
\begin{aligned}
& \underline{\underline{K(\xi, \eta)}}:=\sum_{i<j, k<l} \kappa_{i}^{j}\left(e_{k}, \boldsymbol{e}_{l}\right) \xi^{k l} \eta^{i j} \mathbf{S} \\
& \xi=\sum_{k<l} \xi^{k l} \underline{e_{k} \wedge e_{l}}, \quad \eta=\sum_{i<j} \eta_{i j}^{i j} e_{i} \wedge e_{j} \\
& K\left(\Pi_{p}\right):=\boldsymbol{K}(\underline{v \wedge w}, \underline{v} \wedge w), \\
& \Pi_{p}=\operatorname{span}\left\{0 . \operatorname{cov} \subset \subset T_{\rho} M\right.
\end{aligned}
$$

sectiand arruatave.

Constant sectional curvature

Theorem
Assume there exists a real number k such that $K\left(\Pi_{p}\right)=k$ for all 2-dimensional subspace $\Pi_{p} \in T_{p} M$ for a fixed p. Then the curvature form is expressed as

Conversely, the curvature form is written as above, the sectional curvature at p is constant k.

$$
k=\mathbb{K}\left(\theta_{i} \cap \theta_{j}, \theta_{i} \cap \theta_{j}\right)=k_{j}^{i}\left(\theta_{i} \theta_{j}\right)
$$

Constant sectional curvature

Theorem

$$
\begin{aligned}
& K\left(\Pi_{p}\right)=k \text { for } \forall \Pi_{p} \in T_{p} M \Leftrightarrow \kappa_{j}^{i}=k \omega^{i} \wedge \omega_{j}^{j} \cdot \ldots . \\
& \\
& \quad \begin{array}{l}
\quad v^{\perp}=\boldsymbol{N}(\boldsymbol{v} \wedge \boldsymbol{w}, \boldsymbol{v} \wedge \boldsymbol{w}) \\
\quad v:=\cos \theta \boldsymbol{e}_{i}+\sin \theta \boldsymbol{e}_{j}, \quad \boldsymbol{w}:=\cos \varphi \boldsymbol{e}_{l}+\sin \varphi \boldsymbol{e}_{m} .
\end{array} \\
& \Rightarrow \quad
\end{aligned}
$$

$$
\boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)=\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)=\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)=0
$$

$$
\boldsymbol{K}\left(e_{i} \wedge e_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)=0
$$

$$
\begin{aligned}
& K_{j}^{2}\left(\begin{array}{ll}
e_{k} & \left.Q_{1}\right)
\end{array} \quad=0\right. \\
& \quad \text { un lev }\{i . j]=\{k, d\}
\end{aligned}
$$

Constant sectional curvature

$\{2-\operatorname{ain}=$ suld

 $1 \geq \geq 3$Theorem
Assume that for each p, there exists a/real number $k(p)$ such that $K\left(\Pi_{p}\right)=k(p)$ for any $\Pi_{p} \in \operatorname{Gr}_{2}\left(T_{p} T\right)$. Then the function $k: M \ni p \boldsymbol{k}(p) \in \mathbb{R}$ is constant provided that M is connected.

Constant sectional curvature

Theorem
$K\left(\Pi_{p}\right)=k(p)$ for $\forall \Pi_{p} \in \operatorname{Gr}_{2}\left(T_{p} M\right), \forall p \in M \Rightarrow k(p)$ is constant.

$$
\begin{aligned}
& \begin{array}{c}
k_{i}^{3}=k \omega^{j} n d w^{i} \int \\
d k_{i}^{i}
\end{array} \\
& d h=0
\end{aligned}
$$

$$
\begin{aligned}
K\left(\pi_{p}\right) & =\text { const at } p \Rightarrow k i=R \operatorname{cin} \omega^{\gamma} \\
& \Rightarrow \quad K\left(\pi_{p}\right)=k(p)=\operatorname{com} \lambda . \\
& =m M y .
\end{aligned}
$$ defined on R.

An n-dimensional space form is a complete Riemannian n-manifold of constant sectional curvature.
(Goal)
M : a space form of curvation k connected \&s sunnily comeoted.

$$
\Rightarrow \quad M= \begin{cases}S^{n}(k) & (k>0) \\ \mathbb{R}^{n}=\mathbb{G}_{2}^{n} & (k=0) \\ H^{n}(\mathcal{L}) & (k<\gamma)\end{cases}
$$

The Euclidean space

Example

 theThe Euclidean n-space is fimply connected space form of constant curvature 0 .

The Hyperbolic space

Example

The n-dimensional hyperbolic space $H^{n}\left(-c^{2}\right)$ is $\not \approx$ simply connected space form of constant curvature $-c^{2}$.

The Hyperbolic 3-space

Example
The \int^{9}-dimensional hyperbolic space $\frac{2}{H^{2}}\left(-\frac{1}{0}\right)$ is a simply
connected space form of constant curvature -

$$
\begin{aligned}
& H^{2}(-1):=\left\{x-\cos , x^{1}, \boldsymbol{c}^{2}\right) \in \mathbb{R}_{1}^{3},\langle a, u\rangle-1 \\
&0\rangle 0\} \\
& T_{\mathbb{R}} H^{2}(-1)=a^{\perp}=\{0 \mid\langle\mathbb{a}, 0\rangle=0\}
\end{aligned}
$$

Set $\mathbb{C}_{0}=x^{\perp},\left\{\mathbb{C}_{1}, G_{2}\right\}$ on aritommal frow

$$
\begin{aligned}
& x \quad \underset{\sim}{\sim} \quad \omega^{1}, \omega^{2}=\text { the duad } \\
& \text { frow } \\
& \text { to }\left|C_{1}, i\right| \\
& \begin{array}{c}
\omega_{0}^{2}: \text { the cometru } \\
\omega_{9}^{1}=-\omega_{1}^{2}
\end{array} \\
& \omega_{2}^{1}=-\omega_{1}^{2} \\
& d e_{0} \approx d x=\omega^{1} e_{1}+\alpha^{2} e_{2} \\
& {\left[d e_{1}\right]^{T^{2}}=\nabla e_{1}=\omega_{1}^{2} e_{2} \quad\left[d e_{2}\right]^{\top}=\omega_{2}^{l} e_{1}} \\
& \left.\left\langle d e_{1}, e_{0}\right\rangle=\frac{d}{d} e_{1}, e_{0}\right\rangle-\left\langle\theta_{1}, d e_{0}\right\rangle \\
& \left\langle\theta_{n} \theta_{0}\right\rangle=\psi-\left\langle\theta_{1} \omega^{1} \theta_{1}+\omega^{2} \theta_{2}\right\rangle=-\omega_{!}^{1} \\
& \left\langle d Q, Q_{0}\right\rangle=-\omega^{2}
\end{aligned}
$$

$$
\begin{aligned}
& d g \sim \mathcal{F} \widetilde{\Omega} \quad d e_{0}=\omega^{\prime} G_{1}+\omega^{2} Q_{2} \\
& d \theta_{1}=\omega^{\prime} \theta_{0}+\omega_{2}^{2} \theta_{2} \\
& \widetilde{\Omega}=\left(\begin{array}{cc}
0 & \theta_{2}=\omega^{2} \theta_{1}+\omega_{2}^{\prime} \\
\omega^{1} & \omega^{2} \\
\omega^{2} & \omega_{1}^{2} \\
\omega_{1}^{2} & \frac{\omega_{2}}{*} \\
0 & 0
\end{array}\right) \Omega \\
& =\left(\begin{array}{cc}
0 & +\infty \\
\omega & \Omega
\end{array}\right)
\end{aligned}
$$

Integratility $: d \widetilde{\Omega}+\widetilde{\Omega} \wedge \widetilde{\Omega}=0$

$$
\begin{aligned}
& \widehat{\Omega}=\left(\begin{array}{cc}
0 & \omega^{\top} \\
\omega & \Omega
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\omega^{1}, \omega^{2}\right)_{n}\binom{\omega^{\prime}}{w^{2}}=\omega^{\prime} n \omega^{2}+\omega^{2} \cap w^{2}=0 \\
& d \omega+\Omega \wedge \omega=0 \text { becuse } d \omega \omega^{i}=\sum \omega^{2} \wedge \omega_{b}^{i}
\end{aligned}
$$

By integrability.

$$
\begin{aligned}
& K=-\left(\begin{array}{cc}
\omega^{1} \wedge \omega^{2} & w^{2}-w \\
w^{1} \wedge w^{2} & w^{2} \wedge u^{2}
\end{array}\right)=Q\left(\begin{array}{cc}
0 & \omega^{2} \wedge \omega^{2} \\
w^{1} \wedge w^{2} & j
\end{array}\right) \\
& \Rightarrow \text { sec. cw }=-1
\end{aligned}
$$

The Main Theorem

Theorem

Let M be a simply connected n-manifold and g a Riemannian metric on M. If the sectional curvature of (M, g) is constant k, there exists a local isometry $f: U \rightarrow N^{n}(k)$, where

$$
N^{n}(k)= \begin{cases}S^{n}(k) & (k>0) \\ \mathbb{R}^{n} & (k=0) \\ H^{n}(k) & (k<0)\end{cases}
$$

Local uniqueness theorem

Theorem

Let $U \subset \mathbb{R}^{n}$ be a simply connected domain and g a Riemannian metric on U. If the sectional curvature of (U, g) is constant k, there exists a local isometry $f: U \rightarrow N^{n}(k)$.

Isometry

Definition

A C^{∞}-map $f: M \rightarrow N$ between Riemannian manifolds (M, g) and (N, h) is called a local isometry if $\operatorname{dim} M=\operatorname{dim} N$ and $f^{*} h=g$ hold, that is,

$$
f^{*} h(X, Y):=h(d f(X), d f(Y))=g(X, Y)
$$

holds for $X, Y \in T_{p} M$ and $p \in M$.

Fact (Corollary 6.10)

A smooth map $f:(M, g) \rightarrow(N, h)$ is a local isometry if and only if for each $p \in M$,

$$
\left[\boldsymbol{v}_{1}, \ldots, v_{n}\right]:=\left[d f\left(\boldsymbol{e}_{1}\right), \ldots, d f\left(\boldsymbol{e}_{n}\right)\right]
$$

is an orthonormal frame for some orthonormal frame $\left[e_{j}\right]$ on a

The Special Case

Theorem
Let $U \subset \mathbb{R}^{2}$ be a simply connected domain and g a Riemannian metric on U. If the sectional curvature of (M, g) is constant -1, , there exists a local isometry $f: U \rightarrow H^{2}(-1)$.
$f=$ the lot colin of g.

Exercise 6-1

Problem

Prove that the sphere

$$
S^{x^{2}}=\left\{x \in \mathbb{R}^{3} ;\langle x, x\rangle=1\right\}
$$

of radius 1 in the Euclidean § -space is of constant sectional curvature 1.

Exercise 6-2

Problem 6.11 6~1
 Prove Theorem $\mathbb{\|}$ fo $k=1$ and $n=2$ assuming Exercise $\mathbb{\#}$.

