2 Integrability Conditions

Let $U \subset \mathbb{R}^m$ be a domain of $(\mathbb{R}^m; u^1, \dots, u^m)$ and consider an m-tuple of $n \times n$ -matrix valued C^{∞} -maps

(2.1)
$$\Omega_i : \mathbb{R}^m \supset U \longrightarrow \mathrm{M}_n(\mathbb{R}) \qquad (j = 1, \dots, m).$$

In this section, we consider an initial value problem of a system of linear partial differential equations

(2.2)
$$\frac{\partial X}{\partial u^j} = X\Omega_j \quad (j = 1, \dots, m), \qquad X(P_0) = X_0,$$

where $P_0 = (u_0^1, \dots, u_0^m) \in U$ is a fixed point, X is an $n \times n$ -matrix valued unknown, and $X_0 \in M_n(\mathbb{R})$.

Proposition 2.1. If a C^{∞} -map $X: U \to M_n(\mathbb{R})$ defined on a domain $U \subset \mathbb{R}^m$ satisfies (2.2) with $X_0 \in GL(n,\mathbb{R})$, then $X(P) \in GL(n,\mathbb{R})$ for all $P \in U$. In addition, if Ω_j (j = 1, ..., m) are skew-symmetric and $X_0 \in SO(n)$, then $X(P) \in SO(n)$ holds for all $P \in U$.

Proof. Since U is connected, there exists a continuous path $\gamma_0 \colon [0,1] \to U$ such that $\gamma_0(0) = P_0$ and $\gamma_0(1) = P$. By Whitney's approximation theorem (cf. Theorem 6.21 in [Lee13]), there exists a smooth path $\gamma \colon [0,1] \to U$ joining P_0 and P approximating γ_0 . Since $\hat{X} := X \circ \gamma$ satisfies (2.4) with $\hat{X}(0) = X_0$, Proposition 1.8 yields that $\det \hat{X}(1) \neq 0$ whenever $\det X_0 \neq 0$. Moreover, if Ω_j 's are skew-symmetric, so is $\Omega_{\gamma}(t)$ in (2.4). Thus, by Proposition 1.10, we obtain the latter half of the proposition.

Proposition 2.2. If a matrix-valued C^{∞} function $X: U \to \mathrm{GL}(n, \mathbb{R})$ satisfies (2.2), it holds that

(2.3)
$$\frac{\partial \Omega_j}{\partial u^k} - \frac{\partial \Omega_k}{\partial u^j} = \Omega_j \Omega_k - \Omega_k \Omega_j$$

for each (j, k) with $1 \leq j < k \leq m$.

Proof. Differentiating (2.2) by u^k , we have

$$\frac{\partial^2 X}{\partial u^k \partial u^j} = \frac{\partial X}{\partial u^k} \Omega_j + X \frac{\partial \Omega_j}{\partial u^k} = X \left(\frac{\partial \Omega_j}{\partial u^k} + \Omega_k \Omega_j \right).$$

On the other hand, switching the roles of j and k, we get

$$\frac{\partial^2 X}{\partial u^j \partial u^k} = X \left(\frac{\partial \Omega_k}{\partial u^j} + \Omega_j \Omega_k \right).$$

Since X is of class C^{∞} , the left-hand sides of these equalities coincide, and so are the right-hand sides. Since $X \in GL(n, \mathbb{R})$, the conclusion follows.

The equality (2.3) is called the *integrability condition* or *compatibility condition* of (2.2). The chain rule yields the following:

Lemma 2.3. Let $X: U \to M_n(\mathbb{R})$ be a C^{∞} -map satisfying (2.2). Then for each smooth path $\gamma: I \to U$ defined on an interval $I \subset \mathbb{R}$, $\hat{X}:=X \circ \gamma: I \to M_n(\mathbb{R})$ satisfies the ordinary differential equation

(2.4)
$$\frac{d\hat{X}}{dt}(t) = \hat{X}(t)\Omega_{\gamma}(t) \qquad \left(\Omega_{\gamma}(t) := \sum_{j=1}^{m} \Omega_{j} \circ \gamma(t) \frac{du^{j}}{dt}(t)\right)$$

on
$$I$$
, where $\gamma(t) = (u^1(t), \dots, u^m(t))$.

^{20.} June, 2023.

Lemma 2.4. Let $\Omega_j: U \to \mathrm{M}_n(\mathbb{R})$ (j = 1, ..., m) be C^{∞} -maps defined on a domain $U \subset \mathbb{R}^m$ which satisfy (2.3). Then for each smooth map

$$\sigma: D \ni (t, w) \longmapsto \sigma(t, w) = (u^1(t, w), \dots, u^m(t, w)) \in U$$

defined on a domain $D \subset \mathbb{R}^2$, it holds that

(2.5)
$$\frac{\partial T}{\partial w} - \frac{\partial W}{\partial t} - TW + WT = 0,$$

where

(2.6)
$$T := \sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}, \quad W := \sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial w} \quad (\widetilde{\Omega}_{j} := \Omega_{j} \circ \sigma).$$

Proof. By the chain rule, we have

$$\begin{split} \frac{\partial T}{\partial w} &= \sum_{j,k=1}^m \frac{\partial \Omega_j}{\partial u^k} \frac{\partial u^k}{\partial w} \frac{\partial u^j}{\partial t} + \sum_{j=1}^m \widetilde{\Omega}_j \frac{\partial^2 u^j}{\partial w \partial t}, \\ \frac{\partial W}{\partial t} &= \sum_{j,k=1}^m \frac{\partial \Omega_j}{\partial u^k} \frac{\partial u^k}{\partial t} \frac{\partial u^j}{\partial w} + \sum_{j=1}^m \widetilde{\Omega}_j \frac{\partial^2 u^j}{\partial t \partial w} \\ &= \sum_{j,k=1}^m \frac{\partial \Omega_k}{\partial u^j} \frac{\partial u^j}{\partial t} \frac{\partial u^k}{\partial w} + \sum_{j=1}^m \widetilde{\Omega}_j \frac{\partial^2 u^j}{\partial t \partial w}. \end{split}$$

Hence

$$\begin{split} \frac{\partial T}{\partial w} - \frac{\partial W}{\partial t} &= \sum_{j,k=1}^{m} \left(\frac{\partial \Omega_{j}}{\partial u^{k}} - \frac{\partial \Omega_{k}}{\partial u^{j}} \right) \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t} \\ &= \sum_{j,k=1}^{m} \left(\widetilde{\Omega}_{j} \widetilde{\Omega}_{k} - \widetilde{\Omega}_{k} \widetilde{\Omega}_{j} \right) \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t} \\ &= \left(\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t} \right) \left(\sum_{k=1}^{m} \widetilde{\Omega}_{k} \frac{\partial u^{k}}{\partial w} \right) - \left(\sum_{k=1}^{m} \widetilde{\Omega}_{k} \frac{\partial u^{k}}{\partial w} \right) \left(\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t} \right) \\ &= TW - WT. \end{split}$$

Thus (2.5) holds.

Integrability of linear systems. The main theorem in this section is the following theorem:

Theorem 2.5. Let $\Omega_j: U \to \mathrm{M}_n(\mathbb{R})$ $(j=1,\ldots,m)$ be C^{∞} -functions defined on a <u>simply connected</u> domain $U \subset \mathbb{R}^m$ satisfying (2.3). Then for each $\mathrm{P}_0 \in U$ and $X_0 \in \mathrm{M}_n(\mathbb{R})$, there exists the unique $n \times n$ -matrix valued function $X: U \to \mathrm{M}_n(\mathbb{R})$ satisfying (2.2). Moreover,

- if $X_0 \in GL(n, \mathbb{R})$, $X(P) \in GL(n, \mathbb{R})$ holds on U,
- if $X_0 \in SO(n)$ and Ω_j (j = 1, ..., m) are skew-symmetric matrices, $X \in SO(n)$ holds on U.

Proof. The latter half is a direct conclusion of Proposition 2.1. We show the existence of X: Take a smooth path $\gamma \colon [0,1] \to U$ joining P_0 and P. Then by Theorem 1.15, there exists a unique C^{∞} -map $\hat{X} \colon [0,1] \to \mathrm{M}_n(\mathbb{R})$ satisfying (2.4) with initial condition $\hat{X}(0) = X_0$.

We shall show that the value $\hat{X}(1)$ does not depend on choice of paths joining P_0 and P. To show this, choose another smooth path $\tilde{\gamma}$ joining P_0 and P. Since U is simply connected, there

exists a homotopy between γ and $\tilde{\gamma}$, that is, there exists a continuous map $\sigma_0 \colon [0,1] \times [0,1] \ni (t,w) \mapsto \sigma(t,w) \in U$ satisfying

(2.7)
$$\begin{aligned}
\sigma_0(t,0) &= \gamma(t), & \sigma_0(t,1) &= \tilde{\gamma}(t), \\
\sigma_0(0,w) &= P_0, & \sigma_0(1,w) &= P.
\end{aligned}$$

Then, by Whitney's approximation theorem (Theorem 6.21 in [Lee13]) again, there exists a smooth map $\sigma: [0,1] \times [0,1] \to U$ satisfying the same boundary conditions as (2.7):

(2.8)
$$\begin{aligned} \sigma(t,0) &= \gamma(t), & \sigma(t,1) &= \tilde{\gamma}(t), \\ \sigma(0,w) &= P_0, & \sigma(1,w) &= P. \end{aligned}$$

We set T and W as in (2.6). For each fixed $w \in [0,1]$, there exists $X_w : [0,1] \to \mathrm{M}_n(\mathbb{R})$ such that

$$\frac{dX_w}{dt}(t) = X_w(t)T(t, w), \qquad X_w(0) = X_0.$$

Since T(t, w) is smooth in t and w, the map

$$\check{X}: [0,1] \times [0,1] \ni (t,w) \mapsto X_w(t) \in M_n(\mathbb{R})$$

is a smooth map, because of smoothness in parameter α in Theorem 1.15. To show that $\hat{X}(1) = \check{X}(1,0)$ does not depend on choice of paths, it is sufficient to show that

(2.9)
$$\frac{\partial \check{X}}{\partial w} = \check{X}W$$

holds on $[0,1] \times [0,1]$. In fact, by (2.8), W(1,w) = 0 for all $w \in [0,1]$, and then (2.9) implies that $\check{X}(1,w)$ is constant.

We prove (2.9): By definition, it holds that

(2.10)
$$\frac{\partial \check{X}}{\partial t} = \check{X}T, \qquad \check{X}(0, w) = X_0$$

for each $w \in [0, 1]$. Hence by (2.5)

$$\begin{split} \frac{\partial}{\partial t} \frac{\partial \check{X}}{\partial w} &= \frac{\partial^2 \check{X}}{\partial t \partial w} = \frac{\partial^2 \check{X}}{\partial w \partial t} = \frac{\partial}{\partial w} (\check{X}T) \\ &= \frac{\partial \check{X}}{\partial w} T + \check{X} \frac{\partial T}{\partial w} = \frac{\partial \check{X}}{\partial w} T + \check{X} \left(\frac{\partial W}{\partial t} + TW - WT \right) \\ &= \frac{\partial \check{X}}{\partial w} T + \check{X} \frac{\partial W}{\partial t} + \frac{\partial \check{X}}{\partial t} W - \check{X}WT \\ &= \frac{\partial}{\partial t} (\check{X}W) + \left(\frac{\partial \check{X}}{\partial w} - \check{X}W \right) T. \end{split}$$

So, the function $Y_w(t) := \partial \check{X}/\partial w - \check{X}W$ satisfies the ordinary differential equation

$$\frac{dY_w}{dt}(t) = Y_w(t)T(t, w), \quad Y_w(0) = O$$

for each $w \in [0,1]$. Thus, by the uniqueness of the solution, $Y_w(t) = O$ holds on $[0,1] \times [0,1]$. Hence we have (2.9).

Thus, $\hat{X}(1)$ depends only the end point P of the path. Hence we can set $X(P) := \hat{X}(1)$ for each $P \in U$, and obtain a map $X : U \to M_n(\mathbb{R})$. Finally we show that X is the desired solution. The initial condition $X(P_0) = X_0$ is obviously satisfied. On the other hand, if we set

$$Z(\delta) := X(u^1, \dots, u^j + \delta, \dots, u^m),$$

 $Z(\delta)$ satisfies the equation (2.4) for the path $\gamma(\delta) := (u^1, \dots, u^j + \delta, \dots, u^m)$ with Z(0) = X(P). Since $\Omega_{\gamma} = \Omega_j$,

$$\frac{\partial X}{\partial u^j}(\mathbf{P}) = \left. \frac{dZ}{d\delta} \right|_{\delta=0} = Z(0)\Omega_j(\mathbf{P}) = X(\mathbf{P})\Omega_j(\mathbf{P})$$

which completes the proof.

Application: Poincaré's lemma.

Theorem 2.6 (Poincaré's lemma). If a differential 1-form

$$\omega = \sum_{j=1}^{m} \alpha_j(u^1, \dots, u^m) du^j$$

defined on a simply connected domain $U \subset \mathbb{R}^m$ is closed, that is, $d\omega = 0$ holds, then there exists a C^{∞} -function f on U such that $df = \omega$. Such a function f is unique up to additive constants.

Proof. Since

$$d\omega = \sum_{i < j} \left(\frac{\partial \alpha_j}{\partial u^i} - \frac{\partial \alpha_i}{\partial u^j} \right) \, du^i \wedge du^j,$$

the assumption is equivalent to

(2.11)
$$\frac{\partial \alpha_j}{\partial u^i} - \frac{\partial \alpha_i}{\partial u^j} = 0 \qquad (1 \le i < j \le m).$$

Consider a system of linear partial differential equations with unknown ξ , a 1 × 1-matrix valued function (i.e. a real-valued function), as

(2.12)
$$\frac{\partial \xi}{\partial u^j} = \xi \alpha_j \quad (j = 1, \dots, m), \qquad \xi(u_0^1, \dots, u_0^m) = 1.$$

Then it satisfies (2.3) because of (2.11). Hence by Theorem 2.5, there exists a smooth function $\xi(u^1,\ldots,u^m)$ satisfying (2.12). In particular, Proposition 1.8 yields $\xi=\det\xi$ never vanishes. Hence $\xi(u^1_0,\ldots,u^m_0)=1>0$ means that $\xi>0$ holds on U. Letting $f:=\log\xi$, we have the function f satisfying $df=\omega$.

Next, we show the uniqueness: if two functions f and g satisfy $df = dg = \omega$, it holds that d(f-g) = 0. Hence by connectivity of U, f-g must be constant.

Application: Conjugation of Harmonic functions. In this paragraph, we identify \mathbb{R}^2 with the complex plane \mathbb{C} . It is well-known that a function

$$(2.13) f: U \ni u + \mathrm{i} v \longmapsto \xi(u, v) + \mathrm{i} \eta(u, v) \in \mathbb{C} (\mathrm{i} = \sqrt{-1})$$

defined on a domain $U \subset \mathbb{C}$ is holomorphic if and only if it satisfies the following relation, called the Cauchy-Riemann equations:

(2.14)
$$\frac{\partial \xi}{\partial u} = \frac{\partial \eta}{\partial v}, \qquad \frac{\partial \xi}{\partial v} = -\frac{\partial \eta}{\partial u}.$$

Definition 2.7. A function $f: U \to \mathbb{R}$ defined on a domain $U \subset \mathbb{R}^2$ is said to be *harmonic* if it satisfies

$$\Delta f = f_{uu} + f_{vv} = 0.$$

The operator Δ is called the *Laplacian*.

Proposition 2.8. If function f in (2.13) is holomorphic, $\xi(u,v)$ and $\eta(u,v)$ are harmonic functions.

Proof. By (2.14), we have

$$\xi_{uu} = (\xi_u)_u = (\eta_v)_u = \eta_{vu} = \eta_{uv} = (\eta_u)_v = (-\xi_v)_v = -\xi_{vv}.$$

Hence $\Delta \xi = 0$. Similarly,

$$\eta_{uu} = (-\xi_v)_u = -\xi_{vu} = -\xi_{uv} = -(\xi_u)_v = -(\eta_v)_v = -\eta_{vv}.$$

Thus $\Delta \eta = 0$.

Theorem 2.9. Let $U \subset \mathbb{C} = \mathbb{R}^2$ be a simply connected domain and $\xi(u, v)$ a C^{∞} -function harmonic on U^6 . Then there exists a C^{∞} harmonic function η on U such that $\xi(u, v) + \mathrm{i} \, \eta(u, v)$ is holomorphic on U.

Proof. Let $\alpha := -\xi_v du + \xi_u dv$. Then by the assumption,

$$d\alpha = (\xi_{vv} + \xi_{uu}) \, du \wedge dv = 0$$

holds, that is, α is a closed 1-form. Hence by simple connectivity of U and the Poincaré's lemma (Theorem 2.6), there exists a function η such that $d\eta = \eta_u du + \eta_v dv = \alpha$. Such a function η satisfies (2.14) for given ξ . Hence $\xi + i \eta$ is holomorphic in u + i v.

Example 2.10. A function $\xi(u,v) = e^u \cos v$ is harmonic. Set

$$\alpha := -\xi_v du + \xi_u dv = e^u \sin v du + e^u \cos v dv.$$

Then $\eta(u,v) = e^u \sin v$ satisfies $d\eta = \alpha$. Hence

$$\xi + i \eta = e^u(\cos v + i \sin v) = e^{u+i v}$$

is holomorphic in u + i v.

Definition 2.11. The harmonic function η in Theorem 2.9 is called the *conjugate* harmonic function of ξ .

Exercises

- **2-1** Let $\xi(u,v) := \log \sqrt{u^2 + v^2}$ be a function defined on $U := \mathbb{R}^2 \setminus \{(0,0)\}$.
 - (1) Show that ξ is harmonic on U.
 - (2) Find the conjugate harmonic function η of ξ on

$$V = \mathbb{R}^2 \setminus \{(u,0) \mid u \le 0\} \subset U.$$

- (3) Show that there exists no conjugate harmonic function of ξ defined on U.
- **2-2** Consider a linear system of partial differential equations for 2×2 -matrix valued unknown X on a domain $U \subset \mathbb{R}^2$ as

$$\frac{\partial X}{\partial u} = X\Omega, \quad \frac{\partial X}{\partial v} = X\Lambda, \qquad \left(\Omega := \begin{pmatrix} 0 & -\alpha & -h_1^1 \\ \alpha & 0 & -h_1^2 \\ h_1^1 & h_1^2 & 0 \end{pmatrix}, \quad \Lambda := \begin{pmatrix} 0 & -\beta & -h_2^1 \\ \beta & 0 & -h_2^2 \\ h_2^1 & h_2^2 & 0 \end{pmatrix}\right),$$

where (u, v) are the canonical coordinate system of \mathbb{R}^2 , and α , β and h_j^i (i, j = 1, 2) are smooth functions defined on U. Write down the integrability conditions in terms of α , β and h_j^i .

 $^{^6\}mathrm{The}$ theorem holds under the assumption of C^2 -differentiablity.