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3 Differential Forms

Let M be an n-dimensional manifold and denote by F (M) and X(M) the set of smooth function
and the set of smooth vector fields on M, respectively.

Lie brackets A vector field X € X(M) can be considered as a differential operator acting on
F(M) as (X f)(P) = Xpf. By definition it satisfies the Leibniz rule

(3.1) X(fg)=f(Xg)+9(Xf) (X €X(M),fgeF(M)).

For two vector fields X, Y € X(M), set

(3.2) [(X,Y]: F(M)> f— X(Yf) = Y(Xf) € F(M).

Then [X, Y] also satisfies the Leibnitz rule (3.1), and gives a vector field on M. The map
[, ]: (M) x X(M) 3 (X,Y) = [X,Y] € (M)

is called the Lie bracket on X(M). One can easily show that the product [, ] is bilinear, skew
symmetric and satisfies the Jacobi identity

(3-3) (X, [Y, Z]| + [V, [Z, X]] + [Z,[X, Y]] = 0,

that is, (X(M), [, ]) is a Lie algebra (of infinite dimension). By the Leibniz rule, it holds that
(B4) X, Y] =fIX,Y] - (Y N)X, [X,fY]=[fIX.Y]+(X[)Y (XY eX(M),feFM).
Tensors. For each p € M, the dual space T; M of T, M is the liner space consisting of all linear
maps from T, M to R.

Lemma 3.1. Let (x!,...,2") be a local coordinate system of M around p, and set

(gxﬁ)p cF(M)> fres %(m (da?),: TyM — R  with  (da?), ((;;)p) =

for j,k =1,...,n. Then {(0/0x7),}j=1, .. and {(dxj)p}jzl ,,,,, n are a basis of T,M and Ty M,

respectively, where 5% denotes Kronecker’s delta symbol.

We let
T,M @ Ty M (resp. T;M@T;M@T;M:TPM)

the set of bilinear (resp. trilinear) maps of T, M x T,M (resp. T, M x T, M x T,M) to R. A section
of the vector bundle

T*M@TM:= | TyM@T; M (resp. "M @T*M@T*M := | ] TyM @ Ty M @ Ty M
pEM peEM

is called a covariant 2 (resp. 3)-tensor.
A section w € I'(T* M) of the cotangent bundle T*M is called a covariant 1-tensor or a 1-form.
A one form w induces a linear map

(3.5) w:X(M) > X — w(X) € F(M), where  w(X)(p) = wp(Xp)
By definition, it holds that

(3.6) w(fX) = fw(X) (fe FIM), X € X(M)).
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Lemma 3.2. A linear map w: X(M) — F(M) is a 1-form if and only if (3.6) holds.

Proof. The “only if” part is trivial by definition. Assume a linear map w: X(M) — F(M) satisfies
(3.6). In fact, under a local coordinate system (x!,...,2") around p € M,

n ) 8 n ) 8 n ) 8
_ i % - J v - i_Y
j=1 j=1 p Jj=1
holds. In other words, w(X)(p) depend only on X,,. Hence w induces a map wy: T, M — R. O

Similarly, a covariant 2 (resp. 3) tensor o € I'(T*M @ T*M) (resp. p € I'(T*M @ T*M ®
T*M))induces a bilinear (resp. trilinear) map a: X(M) x X(M) — F(M). (resp. B: X(M) x
X(M) x X(M) — F(M). By the same reason as Lemma 3.2, we have

Lemma 3.3. A bilinear map a: X(M)xX(M) — F(M) (resp. 5: X(M)xX(M)xX(M) — F(M))
is a a covariant 2 (resp. 3)-tensor if and only if

a(fX,Y) = a(X, fY) = fa(X,Y)
(resp. B(FX,Y,Z)=B(X,[Y,Z) = B(X,Y, fZ) = [B(X,Y, Z))

holds for all X, Y, Z € X(M) and f € F(M).
A covariant 2 (resp. 3)-tensor « (resp. /) said to be skew-symmetric if
a(X,Y) = —a(V,X), (B(X,Y,2) = —B(Y,X,Z) = -B(X, Z,Y) = ~B(Z,Y, X))
holds for all X, Y, Z € X(M). We denote

F(M (k

I'(T*M k=
an  aan= Y | | (
{weI'(T*"M @ T*M) ; w is skew-symmetric } (k
{w € F(T*M QT*M ® T*M) T wis skew—symmetric} (k

An element of A¥(M) is called an k-form.

The Exterior products. The exterior product a A 3 € A*(M) of two 1-forms a, 8 € ALY (M) is
defined as

(3.8) (A B)X,Y) = a(X)B(Y) — a(Y)B(X).
On the other hand, the exterior product of o and w is defined as a 3-form on M by
(3.9) (aANW)(X,Y,Z)=(wAa)(X,Y,Z) = a(X,Y)w(Z) + a(Y, Z)w(X) + a(Z, X)w(Y).

Then by a direct computation together with (3.8), it holds that
(3.10) (u/\w)/\/\:,u/\(w/\/\)<::,u/\w/\/\>

for 1-forms p, w and A.
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The Exterior derivative. Under a local coordinate system (z!,...,2"), a one form « and a

two form w are expressed as

n

. ; .

a= E o da? w = g wij dx' A dz?,
Jj=1

15i<j<n

where «; (j = 1,...,n) and w;; (1 £ i < j < n) are smooth functions in (z',...,2"). By
Lemma 3.3 and the property (3.4) of the Lie brackets, we have

Lemma 3.4. For a function f € F(M) = N°(M), a 1-form o € AY(M) and a 2-form 3 € A2(M))
df : X(M)> X — df(X)=X[f e F(M),
doa: X(M)x X(M) > (X,Y)— Xa(Y) —Ya(X) — o([X,Y]) € F(M)
df: X(M) x X(M) x X(M) > (X,Y, Z) —
XB(K Z) + YB(ZvX) + ZB(X7 Y) - 6([X7 YLZ) - ﬁ([K Z]aZ) - 6([Z7 X],Y)
are a 1-form, a 2-form and a 3-form respectively.

Definition 3.5. For a function f, a 1-form « and a 2-form 3, df, da and df are called the exterior
derivatives of f, a and (3, respectively.

Then, for one forms p and w, we have
(3.11) ddw = 0, dlpAw) =duAw—pA dw,
by the definition and the Jacobi identity (3.3).
The Riemannian connection. In the rest of this section, we let (M, g) be an n-dimensional

(pseudo) Riemannian manifold, and denote by ( , ) the inner product induced by g.

Lemma 3.6. There exists the unique bilinear map V: X(M) x X(M) 3 (X,Y) = VxY € X(M)
satisfying

(3.12) VxY -VyX=[X,Y], X(,2)=(VxY,2)+(X,VxZ) (X,Y,ZeX(M))

Definition 3.7. The map V in Lemma 3.6 is called the Riemannian connection or the Levi-Covet
connection of (M, g).

Lemma 3.8. The Riemannian connection V satisfies
(3.13) VixY = fUxY,  Vx(f¥)=(X)Y + [VxY.
Remark 3.9. A bilinear map V: X(M) x X(M) — X (M) satisfying (3.13) is called a linear con-

nection or an amine connection.

Remark 3.10. By Lemmas 3.8 and 3.2, X — VxY determines a one form.

Orthonormal frames. For a sake of simplicity, we assume that g is positive definite, in other
words, (M, g) is a Riemannian manifold.

Definition 3.11. Let U C M be a domain of M. An n-tuple of vector fields {e1,...,e,} on U
is called an orthonormal frame on U if (e;, e;) = 6;;. It is said to be positive if M is oriented and
{e;} is compatible to the orientation on M.

Remark 3.12. For each p € M, there exists a neighborhood U of p which admits an orthonormal
frame on U.
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Lemma 3.13. Let {e;} and {v;} be two orthonormal frames on U C M. Then there exists a
smooth map

(3.14) ©:U — O(n) such that le1,...,e] =[v1,...,0,]0.
Moreover, if {e;} and {v;} determines the common orientation, © is valued on SO(n).

The map @ in Lemma 3.13 is called a gauge transformation.
For an orthonormal frame {e;} on U, we denote by {w’};—1, _, the dual frame of {e;}, that

is, w/ € A1(U) such that
g U G=h
J e = (SJ =
wier) =0 {O (otherwise).
In other words, w?(X) = (e;, X).

Lemma 3.14. Two orthonormal frames {e;} and {v;} are related as (3.14). Then their duals
{wi} and {N} satisfy

Al wt
| =e
A" w"
Proof.
AL Al wl
Sllencen) = | (01,...,0,)0=0=0| : |(e1,...,en). O
ATL )\n wTL

Connection forms.

Definition 3.15. The connection form with respect to an orthonormal frame {e;} is a n x n-matrix
valued one form {2 on U defined by

wi ws . w
wowi oL w2 .
N=1 o o, wj = (Vej,exr) € AL (U).
Wl wy ... wp
By definition, we have Ve; = Y, w;?ek, that is, V]e1,...,en] = [e1,...,ex]82.
Lemma 3.16. w;? = —wi.
Proof. wk = (Ve;,er) =d(e;,exr) — (e, Ver) = —wl.
O
Lemma 3.17. dw' =Y w' Awi.
Proof.
dw' (e, er) = ejw'(ex) — exw'(e;) — w'([ej, ex]) = —w' (e, ex])
= foﬂ'(Ve,ek —Ve,€;) = — <Ve,ek — Vekej,ei> = fw,i(ej) +w§(ek)

Z —wji(e;)w'(er) + wi(ex)w Zw Awi(ej, er). O
=1
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Ezxercises

3-1 Let {e;} and {v;} be two orthonormal frames on a domain U of a Riemannian n-manifold
M, which are related as (3.14). Show that the connection forms {2 of {e;} and A of {v;}
satisfy 2 = 071460 + 6 1dO.

3-2 Let R? be the 3-dimensional Lorentz-Minkowski space and let H?(—1) the hyperbolic 2-space
(i.e. the hyperbolic plane) of constant curvature —1.

(1) Verify that gives a local coordinate system on U := H?(—1) \ {(1,0,0)}, and
e := (sinh u, cos v cosh u, sin v cosh u), ey := (0, —sinv, cosv)

forms a orthonormal frame on U.

(2) Compute the connection form(s) with respect to the orthonormal frame {ey, es}.



