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3 Differential Forms

Let M be an n-dimensional manifold and denote by F(M) and X(M) the set of smooth function
and the set of smooth vector fields on M , respectively.

Lie brackets A vector field X ∈ X(M) can be considered as a differential operator acting on
F(M) as (Xf)(P) = XPf . By definition it satisfies the Leibniz rule

(3.1) X(fg) = f(Xg) + g(Xf) (X ∈ X(M), f, g ∈ F(M)).

For two vector fields X, Y ∈ X(M), set

(3.2) [X,Y ] : F(M) 3 f 7−→ X(Y f)− Y (Xf) ∈ F(M).

Then [X,Y ] also satisfies the Leibnitz rule (3.1), and gives a vector field on M . The map

[ , ] : X(M)× X(M) 3 (X,Y ) 7→ [X,Y ] ∈ X(M)

is called the Lie bracket on X(M). One can easily show that the product [ , ] is bilinear, skew
symmetric and satisfies the Jacobi identity

(3.3) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0,

that is, (X(M), [ , ]) is a Lie algebra (of infinite dimension). By the Leibniz rule, it holds that

(3.4) [fX, Y ] = f [X,Y ]− (Y f)X, [X, fY ] = f [X,Y ] + (Xf)Y (X,Y ∈ X(M), f ∈ F(M)).

Tensors. For each p ∈ M , the dual space T ∗
pM of TpM is the liner space consisting of all linear

maps from TpM to R.

Lemma 3.1. Let (x1, . . . , xn) be a local coordinate system of M around p, and set(
∂

∂
xj

)
p

: F(M) 3 f 7→ ∂f

∂xj
(p), (dxj)p : TpM → R with (dxj)p

((
∂

∂xk

)
p

)
= δjk

for j, k = 1, . . . , n. Then {(∂/∂xj)p}j=1,...,n and {(dxj)p}j=1,...,n are a basis of TpM and T ∗
pM ,

respectively, where δjk denotes Kronecker’s delta symbol.

We let
T ∗
pM ⊗ T ∗

pM
(
resp. T ∗

pM ⊗ T ∗
pM ⊗ T ∗

pM : TpM
)

the set of bilinear (resp. trilinear) maps of TpM ×TpM (resp. TpM ×TpM ×TpM) to R. A section
of the vector bundle

T ∗M ⊗ T ∗M :=
⋃
p∈M

T ∗
pM ⊗ T ∗

pM

resp. T ∗M ⊗ T ∗M ⊗ T ∗M :=
⋃
p∈M

T ∗
pM ⊗ T ∗

pM ⊗ T ∗
pM


is called a covariant 2 (resp. 3)-tensor.

A section ω ∈ Γ (T ∗M) of the cotangent bundle T ∗M is called a covariant 1-tensor or a 1-form.
A one form ω induces a linear map

(3.5) ω : X(M) 3 X 7−→ ω(X) ∈ F(M), where ω(X)(p) = ωp(Xp)

By definition, it holds that

(3.6) ω(fX) = fω(X) (f ∈ F(M), X ∈ X(M)).
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Lemma 3.2. A linear map ω : X(M) → F(M) is a 1-form if and only if (3.6) holds.

Proof. The “only if” part is trivial by definition. Assume a linear map ω : X(M) → F(M) satisfies
(3.6). In fact, under a local coordinate system (x1, . . . , xn) around p ∈ M ,

ω(X)(p) = ω

 n∑
j=1

Xj ∂

∂xj

 (p) =

n∑
j=1

Xj(p)ω

(
∂

∂xj

)
p

,

X =

n∑
j=1

Xj ∂

∂xj
.


holds. In other words, ω(X)(p) depend only on Xp. Hence ω induces a map ωp : TpM → R.

Similarly, a covariant 2 (resp. 3) tensor α ∈ Γ (T ∗M ⊗ T ∗M) (resp. β ∈ Γ (T ∗M ⊗ T ∗M ⊗
T ∗M))induces a bilinear (resp. trilinear) map α : X(M) × X(M) → F(M). (resp. β : X(M) ×
X(M)× X(M) → F(M). By the same reason as Lemma 3.2, we have

Lemma 3.3. A bilinear map α : X(M)×X(M) → F(M) (resp. β : X(M)×X(M)×X(M) → F(M))
is a a covariant 2 (resp. 3)-tensor if and only if

α(fX, Y ) = α(X, fY ) = fα(X,Y )(
resp. β(fX, Y, Z) = β(X, fY, Z) = β(X,Y, fZ) = fβ(X,Y, Z)

)
holds for all X, Y , Z ∈ X(M) and f ∈ F(M).

A covariant 2 (resp. 3)-tensor α (resp. β) said to be skew-symmetric if

α(X,Y ) = −α(Y,X),
(
β(X,Y, Z) = −β(Y,X,Z) = −β(X,Z, Y ) = −β(Z, Y,X)

)
holds for all X, Y , Z ∈ X(M). We denote

(3.7) ∧k(M) :=


F(M (k = 0),

Γ (T ∗M) (k = 1),{
ω ∈ Γ

(
T ∗M ⊗ T ∗M

)
; ω is skew-symmetric

}
(k = 2),{

ω ∈ Γ
(
T ∗M ⊗ T ∗M ⊗ T ∗M

)
; ω is skew-symmetric

}
(k = 3).

An element of ∧k(M) is called an k-form.

The Exterior products. The exterior product α ∧ β ∈ ∧2(M) of two 1-forms α, β ∈ ∧1(M) is
defined as

(3.8) (α ∧ β)(X,Y ) := α(X)β(Y )− α(Y )β(X).

On the other hand, the exterior product of α and ω is defined as a 3-form on M by

(3.9) (α ∧ ω)(X,Y, Z) = (ω ∧ α)(X,Y, Z) := α(X,Y )ω(Z) + α(Y, Z)ω(X) + α(Z,X)ω(Y ).

Then by a direct computation together with (3.8), it holds that

(3.10) (µ ∧ ω) ∧ λ = µ ∧ (ω ∧ λ)

(
=: µ ∧ ω ∧ λ

)
for 1-forms µ, ω and λ.
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The Exterior derivative. Under a local coordinate system (x1, . . . , xn), a one form α and a
two form ω are expressed as

α =

n∑
j=1

αj dx
j , ω =

∑
15i<j5n

ωij dx
i ∧ dxj ,

where αj (j = 1, . . . , n) and ωij (1 5 i < j 5 n) are smooth functions in (x1, . . . , xn). By
Lemma 3.3 and the property (3.4) of the Lie brackets, we have

Lemma 3.4. For a function f ∈ F(M) = ∧0(M), a 1-form α ∈ ∧1(M) and a 2-form β ∈ ∧2(M))

df : X(M) 3 X 7→ df(X) = Xf ∈ F(M),

dα : X(M)× X(M) 3 (X,Y ) 7→ Xα(Y )− Y α(X)− α([X,Y ]) ∈ F(M)

dβ : X(M)× X(M)× X(M) 3 (X,Y, Z) 7→
Xβ(Y, Z) + Y β(Z,X) + Zβ(X,Y )− β([X,Y ], Z)− β([Y, Z], Z)− β([Z,X], Y )

are a 1-form, a 2-form and a 3-form respectively.

Definition 3.5. For a function f , a 1-form α and a 2-form β, df , dα and dβ are called the exterior
derivatives of f , α and β, respectively.

Then, for one forms µ and ω, we have

(3.11) ddω = 0, d(µ ∧ ω) = dµ ∧ ω − µ ∧ dω,

by the definition and the Jacobi identity (3.3).

The Riemannian connection. In the rest of this section, we let (M, g) be an n-dimensional
(pseudo) Riemannian manifold, and denote by 〈 , 〉 the inner product induced by g.

Lemma 3.6. There exists the unique bilinear map ∇ : X(M)× X(M) 3 (X,Y ) 7→ ∇XY ∈ X(M)
satisfying

(3.12) ∇XY −∇Y X = [X,Y ], X 〈Y, Z〉 = 〈∇XY, Z〉+ 〈X,∇XZ〉 (X,Y, Z ∈ X(M))

Definition 3.7. The map ∇ in Lemma 3.6 is called the Riemannian connection or the Levi-Covet
connection of (M, g).

Lemma 3.8. The Riemannian connection ∇ satisfies

(3.13) ∇fXY = f∇XY, ∇X(fY ) = (Xf)Y + f∇XY.

Remark 3.9. A bilinear map ∇ : X(M) × X(M) → X(M) satisfying (3.13) is called a linear con-
nection or an amine connection.
Remark 3.10. By Lemmas 3.8 and 3.2, X 7→ ∇XY determines a one form.

Orthonormal frames. For a sake of simplicity, we assume that g is positive definite, in other
words, (M, g) is a Riemannian manifold.

Definition 3.11. Let U ⊂ M be a domain of M . An n-tuple of vector fields {e1, . . . , en} on U
is called an orthonormal frame on U if 〈ei, ej〉 = δij . It is said to be positive if M is oriented and
{ej} is compatible to the orientation on M .

Remark 3.12. For each p ∈ M , there exists a neighborhood U of p which admits an orthonormal
frame on U .
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Lemma 3.13. Let {ej} and {vj} be two orthonormal frames on U ⊂ M . Then there exists a
smooth map

(3.14) Θ : U −→ O(n) such that [e1, . . . , en] = [v1, . . . ,vn]Θ.

Moreover, if {ej} and {vj} determines the common orientation, Θ is valued on SO(n).

The map Θ in Lemma 3.13 is called a gauge transformation.
For an orthonormal frame {ej} on U , we denote by {ωj}j=1,...,n the dual frame of {ej}, that

is, ωj ∈ ∧1(U) such that

ωj(ek) = δjk =

{
1 (j = k)

0 (otherwise).

In other words, ωj(X) = 〈ej , X〉.

Lemma 3.14. Two orthonormal frames {ej} and {vj} are related as (3.14). Then their duals
{ωj} and {λj} satisfy λ1

...
λn

 = Θ

ω1

...
ωn

 .

Proof. λ1

...
λn

 (e1, . . . , en) =

λ1

...
λn

 (v1, . . . ,vn)Θ = Θ = Θ

ω1

...
ωn

 (e1, . . . , en).

Connection forms.

Definition 3.15. The connection form with respect to an orthonormal frame {ej} is a n×n-matrix
valued one form Ω on U defined by

Ω =


ω1
1 ω1

2 . . . ω1
n

ω2
1 ω2

2 . . . ω2
n

...
...

. . .
...

ωn
1 ωn

2 . . . ωn
n

 , ωk
j := 〈∇ej , ek〉 ∈ ∧1(U).

By definition, we have ∇ej =
∑n

k=1 ω
k
j ek, that is, ∇[e1, . . . , en] = [e1, . . . , en]Ω.

Lemma 3.16. ωk
j = −ωj

k.

Proof. ωk
j = 〈∇ej , ek〉 = d 〈ej , ek〉 − 〈ej ,∇ek〉 = −ωj

k.

Lemma 3.17. dωi =
∑n

l=1 ω
l ∧ ωi

l .

Proof.

dωi(ej , ek) = ejω
i(ek)− ekω

i(ej)− ωi([ej , ek]) = −ωi([ej , ek])

= −ωi(∇ej
ek −∇ek

ej) = −
〈
∇ej

ek −∇ek
ej , ei

〉
= −ωi

k(ej) + ωi
j(ek)

=

n∑
l=1

(
−ωi

l(ej)ω
l(ek) + ωi

l(ek)ω
l(ej)

)
=

n∑
l=1

ωl ∧ ωi
l(ej , ek).
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Exercises

3-1 Let {ej} and {vj} be two orthonormal frames on a domain U of a Riemannian n-manifold
M , which are related as (3.14). Show that the connection forms Ω of {ej} and Λ of {vj}
satisfy Ω = Θ−1ΛΘ +Θ−1dΘ.

3-2 Let R3
1 be the 3-dimensional Lorentz-Minkowski space and let H2(−1) the hyperbolic 2-space

(i.e. the hyperbolic plane) of constant curvature −1.

(1) Verify that gives a local coordinate system on U := H2(−1) \ {(1, 0, 0)}, and

e1 := (sinhu, cos v coshu, sin v coshu), e2 := (0,− sin v, cos v)

forms a orthonormal frame on U .
(2) Compute the connection form(s) with respect to the orthonormal frame {e1, e2}.


