3 Differential Forms

Let M be an n-dimensional manifold and denote by $\mathcal{F}(M)$ and $\mathfrak{X}(M)$ the set of smooth function and the set of smooth vector fields on M, respectively.

Lie brackets A vector field $X \in \mathfrak{X}(M)$ can be considered as a differential operator acting on $\mathcal{F}(M)$ as $(X f)(\mathrm{P})=X_{\mathrm{P}} f$. By definition it satisfies the Leibniz rule

$$
\begin{equation*}
X(f g)=f(X g)+g(X f) \quad(X \in \mathfrak{X}(M), f, g \in \mathcal{F}(M)) \tag{3.1}
\end{equation*}
$$

For two vector fields $X, Y \in \mathfrak{X}(M)$, set

$$
\begin{equation*}
[X, Y]: \mathcal{F}(M) \ni f \longmapsto X(Y f)-Y(X f) \in \mathcal{F}(M) \tag{3.2}
\end{equation*}
$$

Then $[X, Y]$ also satisfies the Leibnitz rule (3.1), and gives a vector field on M. The map

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \mapsto[X, Y] \in \mathfrak{X}(M)
$$

is called the Lie bracket on $\mathfrak{X}(M)$. One can easily show that the product [,] is bilinear, skew symmetric and satisfies the Jacobi identity

$$
\begin{equation*}
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=\mathbf{0} \tag{3.3}
\end{equation*}
$$

that is, $(\mathfrak{X}(M),[]$,$) is a Lie algebra (of infinite dimension). By the Leibniz rule, it holds that$

$$
\begin{equation*}
[f X, Y]=f[X, Y]-(Y f) X, \quad[X, f Y]=f[X, Y]+(X f) Y \quad(X, Y \in \mathfrak{X}(M), f \in \mathcal{F}(M)) \tag{3.4}
\end{equation*}
$$

Tensors. For each $\mathrm{p} \in M$, the dual space $T_{p}^{*} M$ of $T_{p} M$ is the liner space consisting of all linear maps from $T_{p} M$ to \mathbb{R}.

Lemma 3.1. Let $\left(x^{1}, \ldots, x^{n}\right)$ be a local coordinate system of M around p, and set

$$
\left(\frac{\partial}{\partial} x^{j}\right)_{p}: \mathcal{F}(M) \ni f \mapsto \frac{\partial f}{\partial x^{j}}(p), \quad\left(d x^{j}\right)_{p}: T_{p} M \rightarrow \mathbb{R} \quad \text { with } \quad\left(d x^{j}\right)_{p}\left(\left(\frac{\partial}{\partial x^{k}}\right)_{p}\right)=\delta_{k}^{j}
$$

for $j, k=1, \ldots, n$. Then $\left\{\left(\partial / \partial x^{j}\right)_{p}\right\}_{j=1, \ldots, n}$ and $\left\{\left(d x^{j}\right)_{p}\right\}_{j=1, \ldots, n}$ are a basis of $T_{p} M$ and $T_{p}^{*} M$, respectively, where δ_{k}^{j} denotes Kronecker's delta symbol.

We let

$$
T_{p}^{*} M \otimes T_{p}^{*} M \quad\left(\mathrm{resp} . \quad T_{p}^{*} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M: T_{p} M\right)
$$

the set of bilinear (resp. trilinear) maps of $T_{p} M \times T_{p} M$ (resp. $T_{p} M \times T_{p} M \times T_{p} M$) to \mathbb{R}. A section of the vector bundle
$T^{*} M \otimes T^{*} M:=\bigcup_{p \in M} T_{p}^{*} M \otimes T_{p}^{*} M \quad\left(\operatorname{resp} . T^{*} M \otimes T^{*} M \otimes T^{*} M:=\bigcup_{p \in M} T_{p}^{*} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M\right)$
is called a covariant 2 (resp. 3)-tensor.
A section $\omega \in \Gamma\left(T^{*} M\right)$ of the cotangent bundle $T^{*} M$ is called a covariant 1-tensor or a 1-form. A one form ω induces a linear map

$$
\begin{equation*}
\omega: \mathfrak{X}(M) \ni X \longmapsto \omega(X) \in \mathcal{F}(M), \quad \text { where } \quad \omega(X)(p)=\omega_{p}\left(X_{p}\right) \tag{3.5}
\end{equation*}
$$

By definition, it holds that

$$
\begin{equation*}
\omega(f X)=f \omega(X) \quad(f \in \mathcal{F}(M), X \in \mathfrak{X}(M)) \tag{3.6}
\end{equation*}
$$

27. June, 2023.

Lemma 3.2. A linear map $\omega: \mathfrak{X}(M) \rightarrow \mathcal{F}(M)$ is a 1 -form if and only if (3.6) holds.
Proof. The "only if" part is trivial by definition. Assume a linear map $\omega: \mathfrak{X}(M) \rightarrow \mathcal{F}(M)$ satisfies (3.6). In fact, under a local coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ around $p \in M$,

$$
\omega(X)(p)=\omega\left(\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}\right)(p)=\sum_{j=1}^{n} X^{j}(p) \omega\left(\frac{\partial}{\partial x^{j}}\right)_{p}, \quad\left(X=\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}} .\right)
$$

holds. In other words, $\omega(X)(p)$ depend only on X_{p}. Hence ω induces a map $\omega_{p}: T_{p} M \rightarrow \mathbb{R}$.
Similarly, a covariant 2 (resp. 3) tensor $\alpha \in \Gamma\left(T^{*} M \otimes T^{*} M\right)$ (resp. $\beta \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes\right.$ $\left.T^{*} M\right)$)induces a bilinear (resp. trilinear) map $\alpha: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathcal{F}(M)$. (resp. $\beta: \mathfrak{X}(M) \times$ $\mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathcal{F}(M)$. By the same reason as Lemma 3.2, we have

Lemma 3.3. A bilinear map $\alpha: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathcal{F}(M)($ resp. $\beta: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathcal{F}(M))$ is a a covariant 2 (resp. 3)-tensor if and only if

$$
\begin{aligned}
& \alpha(f X, Y)=\alpha(X, f Y)=f \alpha(X, Y) \\
& \quad(\text { resp. } \quad \beta(f X, Y, Z)=\beta(X, f Y, Z)=\beta(X, Y, f Z)=f \beta(X, Y, Z))
\end{aligned}
$$

holds for all $X, Y, Z \in \mathfrak{X}(M)$ and $f \in \mathcal{F}(M)$.
A covariant 2 (resp. 3)-tensor α (resp. β) said to be skew-symmetric if

$$
\alpha(X, Y)=-\alpha(Y, X), \quad(\beta(X, Y, Z)=-\beta(Y, X, Z)=-\beta(X, Z, Y)=-\beta(Z, Y, X))
$$

holds for all $X, Y, Z \in \mathfrak{X}(M)$. We denote

$$
\wedge^{k}(M):= \begin{cases}\mathcal{F}(M & (k=0) \tag{3.7}\\ \Gamma\left(T^{*} M\right) & (k=1) \\ \left\{\omega \in \Gamma\left(T^{*} M \otimes T^{*} M\right) ; \omega \text { is skew-symmetric }\right\} & (k=2) \\ \left\{\omega \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes T^{*} M\right) ; \omega \text { is skew-symmetric }\right\} & (k=3)\end{cases}
$$

An element of $\wedge^{k}(M)$ is called an k-form.

The Exterior products. The exterior product $\alpha \wedge \beta \in \wedge^{2}(M)$ of two 1-forms $\alpha, \beta \in \wedge^{1}(M)$ is defined as

$$
\begin{equation*}
(\alpha \wedge \beta)(X, Y):=\alpha(X) \beta(Y)-\alpha(Y) \beta(X) \tag{3.8}
\end{equation*}
$$

On the other hand, the exterior product of α and ω is defined as a 3 -form on M by

$$
\begin{equation*}
(\alpha \wedge \omega)(X, Y, Z)=(\omega \wedge \alpha)(X, Y, Z):=\alpha(X, Y) \omega(Z)+\alpha(Y, Z) \omega(X)+\alpha(Z, X) \omega(Y) \tag{3.9}
\end{equation*}
$$

Then by a direct computation together with (3.8), it holds that

$$
\begin{equation*}
(\mu \wedge \omega) \wedge \lambda=\mu \wedge(\omega \wedge \lambda)(=: \mu \wedge \omega \wedge \lambda) \tag{3.10}
\end{equation*}
$$

for 1-forms μ, ω and λ.

The Exterior derivative. Under a local coordinate system $\left(x^{1}, \ldots, x^{n}\right)$, a one form α and a two form ω are expressed as

$$
\alpha=\sum_{j=1}^{n} \alpha_{j} d x^{j}, \quad \omega=\sum_{1 \leqq i<j \leqq n} \omega_{i j} d x^{i} \wedge d x^{j}
$$

where $\alpha_{j}(j=1, \ldots, n)$ and $\omega_{i j}(1 \leqq i<j \leqq n)$ are smooth functions in $\left(x^{1}, \ldots, x^{n}\right)$. By Lemma 3.3 and the property (3.4) of the Lie brackets, we have
Lemma 3.4. For a function $f \in \mathcal{F}(M)=\wedge^{0}(M)$, a 1 -form $\alpha \in \wedge^{1}(M)$ and a 2 -form $\beta \in \wedge^{2}(M)$)

$$
\begin{aligned}
d f & : \mathfrak{X}(M) \ni X \mapsto d f(X)=X f \in \mathcal{F}(M) \\
d \alpha: & \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \mapsto X \alpha(Y)-Y \alpha(X)-\alpha([X, Y]) \in \mathcal{F}(M) \\
d \beta: & \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y, Z) \mapsto \\
& X \beta(Y, Z)+Y \beta(Z, X)+Z \beta(X, Y)-\beta([X, Y], Z)-\beta([Y, Z], Z)-\beta([Z, X], Y)
\end{aligned}
$$

are a 1-form, a 2-form and a 3-form respectively.
Definition 3.5. For a function f, a 1 -form α and a 2 -form $\beta, d f, d \alpha$ and $d \beta$ are called the exterior derivatives of f, α and β, respectively.

Then, for one forms μ and ω, we have

$$
\begin{equation*}
d d \omega=0, \quad d(\mu \wedge \omega)=d \mu \wedge \omega-\mu \wedge d \omega \tag{3.11}
\end{equation*}
$$

by the definition and the Jacobi identity (3.3).
The Riemannian connection. In the rest of this section, we let (M, g) be an n-dimensional (pseudo) Riemannian manifold, and denote by \langle,$\rangle the inner product induced by g$.

Lemma 3.6. There exists the unique bilinear map $\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \mapsto \nabla_{X} Y \in \mathfrak{X}(M)$ satisfying

$$
\begin{equation*}
\nabla_{X} Y-\nabla_{Y} X=[X, Y], \quad X\langle Y, Z\rangle=\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle X, \nabla_{X} Z\right\rangle \quad(X, Y, Z \in \mathfrak{X}(M)) \tag{3.12}
\end{equation*}
$$

Definition 3.7. The map ∇ in Lemma 3.6 is called the Riemannian connection or the Levi-Covet connection of (M, g).

Lemma 3.8. The Riemannian connection ∇ satisfies

$$
\begin{equation*}
\nabla_{f X} Y=f \nabla_{X} Y, \quad \nabla_{X}(f Y)=(X f) Y+f \nabla_{X} Y \tag{3.13}
\end{equation*}
$$

Remark 3.9. A bilinear map $\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ satisfying (3.13) is called a linear connection or an amine connection.

Remark 3.10. By Lemmas 3.8 and 3.2, $X \mapsto \nabla_{X} Y$ determines a one form.

Orthonormal frames. For a sake of simplicity, we assume that g is positive definite, in other words, (M, g) is a Riemannian manifold.

Definition 3.11. Let $U \subset M$ be a domain of M. An n-tuple of vector fields $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ on U is called an orthonormal frame on U if $\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\delta_{i j}$. It is said to be positive if M is oriented and $\left\{\boldsymbol{e}_{j}\right\}$ is compatible to the orientation on M.

Remark 3.12. For each $p \in M$, there exists a neighborhood U of p which admits an orthonormal frame on U.

Lemma 3.13. Let $\left\{\boldsymbol{e}_{j}\right\}$ and $\left\{\boldsymbol{v}_{j}\right\}$ be two orthonormal frames on $U \subset M$. Then there exists a smooth map

$$
\begin{equation*}
\Theta: U \longrightarrow \mathrm{O}(n) \quad \text { such that } \quad\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \Theta \tag{3.14}
\end{equation*}
$$

Moreover, if $\left\{\boldsymbol{e}_{j}\right\}$ and $\left\{\boldsymbol{v}_{j}\right\}$ determines the common orientation, Θ is valued on $\mathrm{SO}(n)$.
The map Θ in Lemma 3.13 is called a gauge transformation.
For an orthonormal frame $\left\{\boldsymbol{e}_{j}\right\}$ on U, we denote by $\left\{\omega^{j}\right\}_{j=1, \ldots, n}$ the dual frame of $\left\{\boldsymbol{e}_{j}\right\}$, that is, $\omega^{j} \in \wedge^{1}(U)$ such that

$$
\omega^{j}\left(\boldsymbol{e}_{k}\right)=\delta_{k}^{j}= \begin{cases}1 & (j=k) \\ 0 & \text { (otherwise) }\end{cases}
$$

In other words, $\omega^{j}(X)=\left\langle\boldsymbol{e}_{j}, X\right\rangle$.
Lemma 3.14. Two orthonormal frames $\left\{\boldsymbol{e}_{j}\right\}$ and $\left\{\boldsymbol{v}_{j}\right\}$ are related as (3.14). Then their duals $\left\{\omega^{j}\right\}$ and $\left\{\lambda^{j}\right\}$ satisfy

$$
\left(\begin{array}{c}
\lambda^{1} \\
\vdots \\
\lambda^{n}
\end{array}\right)=\Theta\left(\begin{array}{c}
\omega^{1} \\
\vdots \\
\omega^{n}
\end{array}\right)
$$

Proof.

$$
\left(\begin{array}{c}
\lambda^{1} \\
\vdots \\
\lambda^{n}
\end{array}\right)\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)=\left(\begin{array}{c}
\lambda^{1} \\
\vdots \\
\lambda^{n}
\end{array}\right)\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right) \Theta=\Theta=\Theta\left(\begin{array}{c}
\omega^{1} \\
\vdots \\
\omega^{n}
\end{array}\right)\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)
$$

Connection forms.

Definition 3.15. The connection form with respect to an orthonormal frame $\left\{\boldsymbol{e}_{j}\right\}$ is a $n \times n$-matrix valued one form Ω on U defined by

$$
\Omega=\left(\begin{array}{cccc}
\omega_{1}^{1} & \omega_{2}^{1} & \ldots & \omega_{n}^{1} \\
\omega_{1}^{2} & \omega_{2}^{2} & \ldots & \omega_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{1}^{n} & \omega_{2}^{n} & \ldots & \omega_{n}^{n}
\end{array}\right), \quad \omega_{j}^{k}:=\left\langle\nabla \boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle \in \wedge^{1}(U)
$$

By definition, we have $\nabla \boldsymbol{e}_{j}=\sum_{k=1}^{n} \omega_{j}^{k} \boldsymbol{e}_{k}$, that is, $\nabla\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \Omega$.
Lemma 3.16. $\omega_{j}^{k}=-\omega_{k}^{j}$.
Proof. $\omega_{j}^{k}=\left\langle\nabla \boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle=d\left\langle\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{j}, \nabla \boldsymbol{e}_{k}\right\rangle=-\omega_{k}^{j}$.

Lemma 3.17. $d \omega^{i}=\sum_{l=1}^{n} \omega^{l} \wedge \omega_{l}^{i}$.
Proof.

$$
\begin{aligned}
d \omega^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right) & =\boldsymbol{e}_{j} \omega^{i}\left(\boldsymbol{e}_{k}\right)-\boldsymbol{e}_{k} \omega^{i}\left(\boldsymbol{e}_{j}\right)-\omega^{i}\left(\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right)=-\omega^{i}\left(\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right) \\
& =-\omega^{i}\left(\nabla \boldsymbol{e}_{j} \boldsymbol{e}_{k}-\nabla \boldsymbol{e}_{k} \boldsymbol{e}_{j}\right)=-\left\langle\nabla \boldsymbol{e}_{j} \boldsymbol{e}_{k}-\nabla \boldsymbol{e}_{k} \boldsymbol{e}_{j}, \boldsymbol{e}_{i}\right\rangle=-\omega_{k}^{i}\left(\boldsymbol{e}_{j}\right)+\omega_{j}^{i}\left(\boldsymbol{e}_{k}\right) \\
& =\sum_{l=1}^{n}\left(-\omega_{l}^{i}\left(\boldsymbol{e}_{j}\right) \omega^{l}\left(\boldsymbol{e}_{k}\right)+\omega_{l}^{i}\left(\boldsymbol{e}_{k}\right) \omega^{l}\left(\boldsymbol{e}_{j}\right)\right)=\sum_{l=1}^{n} \omega^{l} \wedge \omega_{l}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right) .
\end{aligned}
$$

Exercises

3-1 Let $\left\{\boldsymbol{e}_{j}\right\}$ and $\left\{\boldsymbol{v}_{j}\right\}$ be two orthonormal frames on a domain U of a Riemannian n-manifold M, which are related as (3.14). Show that the connection forms Ω of $\left\{\boldsymbol{e}_{j}\right\}$ and Λ of $\left\{\boldsymbol{v}_{j}\right\}$ satisfy $\Omega=\Theta^{-1} \Lambda \Theta+\Theta^{-1} d \Theta$.

3-2 Let \mathbb{R}_{1}^{3} be the 3-dimensional Lorentz-Minkowski space and let $H^{2}(-1)$ the hyperbolic 2-space (i.e. the hyperbolic plane) of constant curvature -1 .
(1) Verify that gives a local coordinate system on $U:=H^{2}(-1) \backslash\{(1,0,0)\}$, and

$$
\boldsymbol{e}_{1}:=(\sinh u, \cos v \cosh u, \sin v \cosh u), \quad \boldsymbol{e}_{2}:=(0,-\sin v, \cos v)
$$

forms a orthonormal frame on U.
(2) Compute the connection form(s) with respect to the orthonormal frame $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$.

