3 Differential Forms

Let M be an n-dimensional manifold and denote by $\mathcal{F}(M)$ and $\mathfrak{X}(M)$ the set of smooth function and the set of smooth vector fields on M, respectively.

Lie brackets A vector field $X \in \mathfrak{X}(M)$ can be considered as a differential operator acting on $\mathcal{F}(M)$ as $(Xf)(P) = X_P f$. By definition it satisfies the Leibniz rule

$$(3.1) X(fg) = f(Xg) + g(Xf) (X \in \mathfrak{X}(M), f, g \in \mathcal{F}(M)).$$

For two vector fields $X, Y \in \mathfrak{X}(M)$, set

$$[X,Y]: \mathcal{F}(M) \ni f \longmapsto X(Yf) - Y(Xf) \in \mathcal{F}(M).$$

Then [X,Y] also satisfies the Leibnitz rule (3.1), and gives a vector field on M. The map

$$[\ ,\]\colon \mathfrak{X}(M)\times \mathfrak{X}(M)\ni (X,Y)\mapsto [X,Y]\in \mathfrak{X}(M)$$

is called the *Lie bracket* on $\mathfrak{X}(M)$. One can easily show that the product $[\ ,\]$ is bilinear, skew symmetric and satisfies the *Jacobi identity*

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = \mathbf{0},$$

that is, $(\mathfrak{X}(M), [,])$ is a Lie algebra (of infinite dimension). By the Leibniz rule, it holds that

$$(3.4) [fX,Y] = f[X,Y] - (Yf)X, [X,fY] = f[X,Y] + (Xf)Y (X,Y \in \mathfrak{X}(M), f \in \mathcal{F}(M)).$$

Tensors. For each $p \in M$, the dual space T_p^*M of T_pM is the liner space consisting of all linear maps from T_pM to \mathbb{R} .

Lemma 3.1. Let (x^1, \ldots, x^n) be a local coordinate system of M around p, and set

$$\left(\frac{\partial}{\partial}x^{j}\right)_{p}:\mathcal{F}(M)\ni f\mapsto \frac{\partial f}{\partial x^{j}}(p), \qquad (dx^{j})_{p}:T_{p}M\to\mathbb{R} \qquad \textit{with} \qquad (dx^{j})_{p}\left(\left(\frac{\partial}{\partial x^{k}}\right)_{p}\right)=\delta_{k}^{j}$$

for j, k = 1, ..., n. Then $\{(\partial/\partial x^j)_p\}_{j=1,...,n}$ and $\{(dx^j)_p\}_{j=1,...,n}$ are a basis of T_pM and T_p^*M , respectively, where δ_k^j denotes Kronecker's delta symbol.

We let

$$T_p^*M \otimes T_p^*M$$
 (resp. $T_p^*M \otimes T_p^*M \otimes T_p^*M : T_pM$)

the set of bilinear (resp. trilinear) maps of $T_pM \times T_pM$ (resp. $T_pM \times T_pM \times T_pM$) to \mathbb{R} . A section of the vector bundle

$$T^*M\otimes T^*M:=\bigcup_{p\in M}T_p^*M\otimes T_p^*M \quad \left(\text{resp. } T^*M\otimes T^*M\otimes T^*M:=\bigcup_{p\in M}T_p^*M\otimes T_p^*M\otimes T_p^*M\right)$$

is called a *covariant* 2 (resp. 3)-tensor.

A section $\omega \in \Gamma(T^*M)$ of the cotangent bundle T^*M is called a *covariant* 1-tensor or a 1-form. A one form ω induces a linear map

(3.5)
$$\omega: \mathfrak{X}(M) \ni X \longmapsto \omega(X) \in \mathcal{F}(M), \quad \text{where} \quad \omega(X)(p) = \omega_p(X_p)$$

By definition, it holds that

(3.6)
$$\omega(fX) = f\omega(X) \qquad (f \in \mathcal{F}(M), X \in \mathfrak{X}(M)).$$

27. June, 2023.

Lemma 3.2. A linear map $\omega \colon \mathfrak{X}(M) \to \mathcal{F}(M)$ is a 1-form if and only if (3.6) holds.

Proof. The "only if" part is trivial by definition. Assume a linear map $\omega \colon \mathfrak{X}(M) \to \mathcal{F}(M)$ satisfies (3.6). In fact, under a local coordinate system (x^1, \ldots, x^n) around $p \in M$,

$$\omega(X)(p) = \omega\left(\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}\right)(p) = \sum_{j=1}^{n} X^{j}(p)\omega\left(\frac{\partial}{\partial x^{j}}\right)_{p}, \qquad \left(X = \sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}\right)_{p}$$

holds. In other words, $\omega(X)(p)$ depend only on X_p . Hence ω induces a map $\omega_p \colon T_pM \to \mathbb{R}$. \square

Similarly, a covariant 2 (resp. 3) tensor $\alpha \in \Gamma(T^*M \otimes T^*M)$ (resp. $\beta \in \Gamma(T^*M \otimes T^*M \otimes T^*M)$)induces a bilinear (resp. trilinear) map $\alpha \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{F}(M)$. (resp. $\beta \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{F}(M)$. By the same reason as Lemma 3.2, we have

Lemma 3.3. A bilinear map $\alpha \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{F}(M)$ (resp. $\beta \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{F}(M)$) is a a covariant 2 (resp. 3)-tensor if and only if

$$\alpha(fX,Y) = \alpha(X,fY) = f\alpha(X,Y)$$

$$(resp. \quad \beta(fX,Y,Z) = \beta(X,fY,Z) = \beta(X,Y,fZ) = f\beta(X,Y,Z))$$

holds for all $X, Y, Z \in \mathfrak{X}(M)$ and $f \in \mathcal{F}(M)$.

A covariant 2 (resp. 3)-tensor α (resp. β) said to be skew-symmetric if

$$\alpha(X,Y) = -\alpha(Y,X), \quad (\beta(X,Y,Z) = -\beta(Y,X,Z) = -\beta(X,Z,Y) = -\beta(Z,Y,X))$$

holds for all $X, Y, Z \in \mathfrak{X}(M)$. We denote

(3.7)
$$\wedge^{k}(M) := \begin{cases} \mathcal{F}(M) & (k=0), \\ \Gamma(T^{*}M) & (k=1), \\ \{\omega \in \Gamma(T^{*}M \otimes T^{*}M) ; \omega \text{ is skew-symmetric} \} & (k=2), \\ \{\omega \in \Gamma(T^{*}M \otimes T^{*}M \otimes T^{*}M) ; \omega \text{ is skew-symmetric} \} & (k=3). \end{cases}$$

An element of $\wedge^k(M)$ is called an k-form.

The Exterior products. The exterior product $\alpha \wedge \beta \in \wedge^2(M)$ of two 1-forms $\alpha, \beta \in \wedge^1(M)$ is defined as

$$(3.8) \qquad (\alpha \wedge \beta)(X,Y) := \alpha(X)\beta(Y) - \alpha(Y)\beta(X).$$

On the other hand, the exterior product of α and ω is defined as a 3-form on M by

$$(3.9) \qquad (\alpha \wedge \omega)(X,Y,Z) = (\omega \wedge \alpha)(X,Y,Z) := \alpha(X,Y)\omega(Z) + \alpha(Y,Z)\omega(X) + \alpha(Z,X)\omega(Y).$$

Then by a direct computation together with (3.8), it holds that

$$(3.10) \qquad (\mu \wedge \omega) \wedge \lambda = \mu \wedge (\omega \wedge \lambda) \bigg(=: \mu \wedge \omega \wedge \lambda \bigg)$$

for 1-forms μ , ω and λ .

The Exterior derivative. Under a local coordinate system (x^1, \ldots, x^n) , a one form α and a two form ω are expressed as

$$\alpha = \sum_{j=1}^{n} \alpha_j \, dx^j, \qquad \omega = \sum_{1 \le i < j \le n} \omega_{ij} \, dx^i \wedge dx^j,$$

where α_j (j = 1, ..., n) and ω_{ij} $(1 \leq i < j \leq n)$ are smooth functions in $(x^1, ..., x^n)$. By Lemma 3.3 and the property (3.4) of the Lie brackets, we have

Lemma 3.4. For a function $f \in \mathcal{F}(M) = \wedge^0(M)$, a 1-form $\alpha \in \wedge^1(M)$ and a 2-form $\beta \in \wedge^2(M)$

$$df \colon \mathfrak{X}(M) \ni X \mapsto df(X) = Xf \in \mathcal{F}(M),$$

$$d\alpha \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \ni (X,Y) \mapsto X\alpha(Y) - Y\alpha(X) - \alpha([X,Y]) \in \mathcal{F}(M)$$

$$d\beta \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \ni (X,Y,Z) \mapsto$$

$$X\beta(Y,Z) + Y\beta(Z,X) + Z\beta(X,Y) - \beta([X,Y],Z) - \beta([Y,Z],Z) - \beta([Z,X],Y)$$

are a 1-form, a 2-form and a 3-form respectively.

Definition 3.5. For a function f, a 1-form α and a 2-form β , df, $d\alpha$ and $d\beta$ are called the *exterior derivatives* of f, α and β , respectively.

Then, for one forms μ and ω , we have

(3.11)
$$dd\omega = 0, \qquad d(\mu \wedge \omega) = d\mu \wedge \omega - \mu \wedge d\omega,$$

by the definition and the Jacobi identity (3.3).

The Riemannian connection. In the rest of this section, we let (M, g) be an *n*-dimensional (pseudo) Riemannian manifold, and denote by \langle , \rangle the inner product induced by g.

Lemma 3.6. There exists the unique bilinear map $\nabla \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \ni (X,Y) \mapsto \nabla_X Y \in \mathfrak{X}(M)$ satisfying

$$(3.12) \quad \nabla_X Y - \nabla_Y X = [X, Y], \quad X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle X, \nabla_X Z \rangle \quad (X, Y, Z \in \mathfrak{X}(M))$$

Definition 3.7. The map ∇ in Lemma 3.6 is called the *Riemannian connection* or the *Levi-Covet connection* of (M, q).

Lemma 3.8. The Riemannian connection ∇ satisfies

(3.13)
$$\nabla_{fX}Y = f\nabla_XY, \qquad \nabla_X(fY) = (Xf)Y + f\nabla_XY.$$

Remark 3.9. A bilinear map $\nabla \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ satisfying (3.13) is called a linear connection or an amine connection.

Remark 3.10. By Lemmas 3.8 and 3.2, $X \mapsto \nabla_X Y$ determines a one form.

Orthonormal frames. For a sake of simplicity, we assume that g is positive definite, in other words, (M, g) is a Riemannian manifold.

Definition 3.11. Let $U \subset M$ be a domain of M. An n-tuple of vector fields $\{e_1, \ldots, e_n\}$ on U is called an *orthonormal frame* on U if $\langle e_i, e_j \rangle = \delta_{ij}$. It is said to be *positive* if M is oriented and $\{e_j\}$ is compatible to the orientation on M.

Remark 3.12. For each $p \in M$, there exists a neighborhood U of p which admits an orthonormal frame on U.

Lemma 3.13. Let $\{e_j\}$ and $\{v_j\}$ be two orthonormal frames on $U \subset M$. Then there exists a smooth map

(3.14)
$$\Theta: U \longrightarrow O(n)$$
 such that $[e_1, \dots, e_n] = [v_1, \dots, v_n]\Theta$.

Moreover, if $\{e_j\}$ and $\{v_j\}$ determines the common orientation, Θ is valued on SO(n).

The map Θ in Lemma 3.13 is called a gauge transformation.

For an orthonormal frame $\{e_j\}$ on U, we denote by $\{\omega^j\}_{j=1,\ldots,n}$ the dual frame of $\{e_j\}$, that is, $\omega^j \in \wedge^1(U)$ such that

$$\omega^{j}(\mathbf{e}_{k}) = \delta_{k}^{j} = \begin{cases} 1 & (j=k) \\ 0 & \text{(otherwise)}. \end{cases}$$

In other words, $\omega^{j}(X) = \langle \boldsymbol{e}_{j}, X \rangle$.

Lemma 3.14. Two orthonormal frames $\{e_j\}$ and $\{v_j\}$ are related as (3.14). Then their duals $\{\omega^j\}$ and $\{\lambda^j\}$ satisfy

$$\begin{pmatrix} \lambda^1 \\ \vdots \\ \lambda^n \end{pmatrix} = \Theta \begin{pmatrix} \omega^1 \\ \vdots \\ \omega^n \end{pmatrix}.$$

Proof.

$$egin{pmatrix} \lambda^1 \ dots \ \lambda^n \end{pmatrix} (oldsymbol{e}_1,\ldots,oldsymbol{e}_n) = egin{pmatrix} \lambda^1 \ dots \ \lambda^n \end{pmatrix} (oldsymbol{v}_1,\ldots,oldsymbol{v}_n) oldsymbol{ heta} = oldsymbol{ heta} = oldsymbol{ heta} egin{pmatrix} \omega^1 \ dots \ \omega^n \end{pmatrix} (oldsymbol{e}_1,\ldots,oldsymbol{e}_n). \ egin{pmatrix} oldsymbol{\Box} \end{array}$$

Connection forms.

Definition 3.15. The *connection form* with respect to an orthonormal frame $\{e_j\}$ is a $n \times n$ -matrix valued one form Ω on U defined by

$$\Omega = \begin{pmatrix} \omega_1^1 & \omega_2^1 & \dots & \omega_n^1 \\ \omega_1^2 & \omega_2^2 & \dots & \omega_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \omega_1^n & \omega_2^n & \dots & \omega_n^n \end{pmatrix}, \qquad \omega_j^k := \langle \nabla \boldsymbol{e}_j, \boldsymbol{e}_k \rangle \in \wedge^1(U).$$

By definition, we have $\nabla e_j = \sum_{k=1}^n \omega_j^k e_k$, that is, $\nabla [e_1, \dots, e_n] = [e_1, \dots, e_n] \Omega$.

Lemma 3.16. $\omega_j^k = -\omega_k^j$.

Proof.
$$\omega_j^k = \langle \nabla e_j, e_k \rangle = d \langle e_j, e_k \rangle - \langle e_j, \nabla e_k \rangle = -\omega_k^j$$
.

Lemma 3.17. $d\omega^i = \sum_{l=1}^n \omega^l \wedge \omega_l^i$.

Proof.

$$d\omega^{i}(\mathbf{e}_{j}, \mathbf{e}_{k}) = \mathbf{e}_{j}\omega^{i}(\mathbf{e}_{k}) - \mathbf{e}_{k}\omega^{i}(\mathbf{e}_{j}) - \omega^{i}([\mathbf{e}_{j}, \mathbf{e}_{k}]) = -\omega^{i}([\mathbf{e}_{j}, \mathbf{e}_{k}])$$

$$= -\omega^{i}(\nabla \mathbf{e}_{j} \mathbf{e}_{k} - \nabla \mathbf{e}_{k} \mathbf{e}_{j}) = -\langle \nabla \mathbf{e}_{j} \mathbf{e}_{k} - \nabla \mathbf{e}_{k} \mathbf{e}_{j}, \mathbf{e}_{i} \rangle = -\omega^{i}_{k}(\mathbf{e}_{j}) + \omega^{i}_{j}(\mathbf{e}_{k})$$

$$= \sum_{l=1}^{n} \left(-\omega^{i}_{l}(\mathbf{e}_{j})\omega^{l}(\mathbf{e}_{k}) + \omega^{i}_{l}(\mathbf{e}_{k})\omega^{l}(\mathbf{e}_{j}) \right) = \sum_{l=1}^{n} \omega^{l} \wedge \omega^{i}_{l}(\mathbf{e}_{j}, \mathbf{e}_{k}). \qquad \Box$$

Exercises

3-1 Let $\{e_j\}$ and $\{v_j\}$ be two orthonormal frames on a domain U of a Riemannian n-manifold M, which are related as (3.14). Show that the connection forms Ω of $\{e_j\}$ and Λ of $\{v_j\}$ satisfy $\Omega = \Theta^{-1}\Lambda\Theta + \Theta^{-1}d\Theta$.

- **3-2** Let \mathbb{R}^3_1 be the 3-dimensional Lorentz-Minkowski space and let $H^2(-1)$ the hyperbolic 2-space (i.e. the hyperbolic plane) of constant curvature -1.
 - (1) Verify that gives a local coordinate system on $U := H^2(-1) \setminus \{(1,0,0)\}$, and

$$e_1 := (\sinh u, \cos v \cosh u, \sin v \cosh u), \qquad e_2 := (0, -\sin v, \cos v)$$

forms a orthonormal frame on U.

(2) Compute the connection form(s) with respect to the orthonormal frame $\{e_1, e_2\}$.