4 Curvatre forms

4.1 Addendum to the previous section

Proposition 4.1 (The local expression of the Lie bracket). Let $\left(U ; x^{1}, \ldots, x^{n}\right)$ be a coordinate neighborhood of an n-manifold M. Then the Lie bracket of two vector fields

$$
X=\sum_{j=1}^{n} \xi^{j} \frac{\partial}{\partial x^{j}}, \quad Y=\sum_{j=1}^{n} \eta^{j} \frac{\partial}{\partial x^{j}}
$$

is expressed as

$$
[X, Y]=\sum_{j=1}^{n}\left(\xi^{k} \frac{\partial \eta^{j}}{\partial x^{k}}-\eta^{k} \frac{\partial \xi^{j}}{\partial x^{k}}\right) \frac{\partial}{\partial x^{j}}
$$

Proof. For a smooth function f on U, it holds that

$$
\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}} f=\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}=\frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}=\frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{i}} f
$$

Hence $\left[\partial / \partial x^{i}, \partial / \partial x^{j}\right]=0$. Then the conclusion follows from bilinearlity of $[X, Y]$ and the formula

$$
[f X, Y]=f[X, Y]-(Y f) X, \quad[X, f Y]=f[X, Y]+(X f) Y
$$

for a smooth function f and vector fields X and Y.
Proposition 4.2 (A local expression of the connection forms). Let U be a domain of a Riemannian n-manifold (M, g) and $\left[e_{1}, \ldots, e_{n}\right]$ an orthonormal frame on U. Then the connection form ω_{i}^{j} with respect to the frame $\left[\boldsymbol{e}_{j}\right]$ is obtained as

$$
\omega_{i}^{j}\left(\boldsymbol{e}_{k}\right)=\frac{1}{2}\left(-\left\langle\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right], \boldsymbol{e}_{k}\right\rangle+\left\langle\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right], \boldsymbol{e}_{i}\right\rangle+\left\langle\left[\boldsymbol{e}_{k}, \boldsymbol{e}_{i}\right], \boldsymbol{e}_{j}\right\rangle\right)
$$

where \langle,$\rangle denotes the inner product induced from g$.
Proof. By the definition of the Levi-Civita connection ∇,

$$
\begin{aligned}
\omega_{i}^{j}\left(\boldsymbol{e}_{k}\right) & =\left\langle\nabla \boldsymbol{e}_{k} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\boldsymbol{e}_{k}\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle-\left\langle\boldsymbol{e}_{i}, \nabla \boldsymbol{e}_{k} \boldsymbol{e}_{j}\right\rangle=-\left\langle\boldsymbol{e}_{i}, \nabla \boldsymbol{e}_{j} \boldsymbol{e}_{k}+\left[\boldsymbol{e}_{k}, \boldsymbol{e}_{j}\right]\right\rangle \\
& =-\boldsymbol{e}_{j}\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right\rangle+\left\langle\nabla \boldsymbol{e}_{j} \boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{i},\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right\rangle \\
& =\left\langle\nabla \boldsymbol{e}_{i} \boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle+\left\langle\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right], \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{i},\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right\rangle \\
& =\boldsymbol{e}_{i}\left\langle\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{j}, \nabla \boldsymbol{e}_{i} \boldsymbol{e}_{k}\right\rangle+\left\langle\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right], \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{i},\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right\rangle \\
& =-\left\langle\boldsymbol{e}_{j}, \nabla \boldsymbol{e}_{k} \boldsymbol{e}_{i}\right\rangle-\left\langle\boldsymbol{e}_{j},\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right]\right\rangle+\left\langle\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right], \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{i},\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right\rangle \\
& =-\omega_{i}^{j}\left(\boldsymbol{e}_{k}\right)+\left\langle\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right], \boldsymbol{e}_{k}\right\rangle-\left\langle\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right], \boldsymbol{e}_{i}\right\rangle+\left\langle\left[\boldsymbol{e}_{k}, \boldsymbol{e}_{i}\right], \boldsymbol{e}_{j}\right\rangle
\end{aligned}
$$

4.2 Preliminaries

Integrability condition, a review. Let U be a domain of \mathbb{R}^{m} with coordinate system $\left(x^{1}, \ldots, x^{m}\right)$, and consider a system of differential equations

$$
\begin{equation*}
\frac{\partial F}{\partial x^{l}}=F \Omega_{l} \quad(l=1, \ldots, m) \tag{4.1}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
F\left(\mathrm{P}_{0}\right)=F_{0} \in \mathrm{M}_{n}(\mathbb{R}), \quad \mathrm{P}_{0}=\left(x_{0}^{1}, \ldots, x_{0}^{m}\right) \in U \tag{4.2}
\end{equation*}
$$

where F is an unknown map into the space of $n \times n$-real matrices $\mathrm{M}_{n}(\mathbb{R})$, and the coefficient matrices $\Omega_{l}(l=1, \ldots, m)$ are $\mathrm{M}_{n}(\mathbb{R})$-valued C^{∞}-functions.
Lemma 4.3. If the initial condition F_{0} in (4.2) is non-singular, i.e., $F_{0} \in \operatorname{GL}(n, \mathbb{R})^{7}$, F satisfying

[^0](4.1) is a $\mathrm{GL}(n, \mathbb{R})$-valued function, that is, F is invertible for each point on U.

Proof. For each $\mathrm{P} \in U$, take a smooth path $\gamma(t):=\left(x^{1}(t), \ldots, x^{m}(t)\right)(0 \leqq t \leqq 1)$ with $\gamma(0)=\mathrm{P}_{0}$ and $\gamma(1)=\mathrm{P}$. Then the matrix-valued function $\hat{F}:=F \circ \gamma$ of one variable satisfies the ordinary differential equation

$$
\frac{d \hat{F}}{d t}=\hat{F} \hat{\Omega}, \quad \hat{\Omega}:=\sum_{l=1}^{m} \Omega_{l} \circ \gamma \frac{d x^{l}}{d t} .
$$

Hence $\varphi:=\operatorname{det} \hat{F}$ satisfies

$$
\frac{d \varphi}{d t}=\frac{d}{d t} \operatorname{det} \hat{F}=\operatorname{tr}\left(\tilde{\hat{F}} \frac{d \hat{F}}{d t}\right)=\operatorname{tr}(\tilde{\hat{F}} \hat{F} \hat{\Omega})=\operatorname{det} \hat{F} \operatorname{tr} \hat{\Omega}=\varphi \omega
$$

where $\widetilde{\hat{F}}$ denotes the cofactor matrix of \hat{F} and $\omega:=\operatorname{tr} \hat{\Omega}$. So

$$
\operatorname{det} \hat{F}(t)=\varphi(t)=\varphi_{0} \exp \int_{0}^{t} \omega(\tau) d \tau \quad\left(\varphi_{0}:=\operatorname{det} F_{0}\right)
$$

proving the lemma.
As seen in the previous lecturesthe following integrability condition holds:
Lemma 4.4. If a C^{∞} _map $F: U \rightarrow \operatorname{GL}(n, \mathbb{R})$ satisfies (4.1), then it hold on U that

$$
\begin{equation*}
\frac{\partial \Omega_{l}}{\partial x^{k}}-\frac{\partial \Omega_{k}}{\partial x^{l}}+\Omega_{k} \Omega_{l}-\Omega_{l} \Omega_{k}=O \quad(1 \leqq k<l \leqq m) . \tag{4.3}
\end{equation*}
$$

The integrability condition (4.3) guarantees existence of the solution of (4.1) as follows
Theorem 4.5. Let $\Omega_{l}: U \rightarrow \mathrm{M}_{m}(\mathbb{R})(l=1, \ldots, n)$ be C^{∞}-functions defined on a simply connected domain $U \subset \mathbb{R}^{n}$ satisfying (4.3) Then for each $\mathrm{P}_{0} \in U$ and $F_{0} \in \mathrm{M}_{m}(\mathbb{R})$, there exists the unique $m \times m$-matrix valued function $F: U \rightarrow \mathrm{M}_{m}(\mathbb{R})$ satisfying (4.1) and (4.2). Moreover,

- if $F_{0} \in \mathrm{GL}(m, \mathbb{R}), F(\mathrm{P}) \in \mathrm{GL}(m, \mathbb{R})$ holds on U,
- if $F_{0} \in \mathrm{SO}(n)$ and Ω_{l} 's are skew-symmetric matrices, $F(\mathrm{P}) \in \mathrm{SO}(n)$ holds on U.

Coordinate-free expressions Let $\Omega_{l}: U \rightarrow \mathrm{M}_{n}(\mathbb{R})(l=1, \ldots, m)$ be C^{∞}-functions defined on a domain $U \subset \mathbb{R}^{m}$, and define $n \times n$-matrix Ω of 1 -forms as

$$
\Omega=\left(\begin{array}{cccc}
\omega_{1}^{1} & \omega_{2}^{1} & \ldots & \omega_{n}^{1} \tag{4.4}\\
\omega_{1}^{2} & \omega_{2}^{2} & \ldots & \omega_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{1}^{n} & \omega_{2}^{n} & \ldots & \omega_{n}^{n}
\end{array}\right):=\sum_{l=1}^{m} \Omega_{l} d x^{l}=\left(\begin{array}{cccc}
\sum \omega_{l, 1}^{1} d x^{l} & \sum \omega_{l, 2}^{1} d x^{l} & \ldots & \sum \omega_{l, n}^{1} d x^{l} \\
\sum \omega_{l, 1}^{l} d x^{l} & \sum \omega_{l, 2}^{l} d x^{l} & \ldots & \sum \omega_{l, n}^{2} d x^{l} \\
\vdots & \vdots & \ddots & \vdots \\
\sum \omega_{l, 1}^{n} d x^{l} & \sum \omega_{l, 2}^{n} d x^{l} & \ldots & \sum \omega_{l, n}^{n} d x^{l}
\end{array}\right),
$$

where $\Omega_{l}=\left(\omega_{l, j}^{i}\right)$. Then Ω is considered as a $\mathrm{M}_{n}(\mathbb{R})$-valued 1-form, and (4.1) is restated as

$$
\begin{equation*}
d F=F \Omega . \tag{4.5}
\end{equation*}
$$

Lemma 4.6. Under the situation above, the integrability condition (4.3) is equivalent to

$$
\begin{equation*}
d \Omega+\Omega \wedge \Omega=O, \quad \text { where } \quad \Omega \wedge \Omega=\left(\sum_{k=1}^{n} \omega_{k}^{i} \wedge \omega_{j}^{k}\right)_{i, j=1, \ldots, n} \tag{4.6}
\end{equation*}
$$

Proof. Assume F be a solution of (4.5) with $F \in \mathrm{GL}(n, \mathbb{R})$. Then

$$
O=d d F=d(F \Omega)=d F \wedge \Omega+F d \Omega=F(\Omega \wedge \Omega+d \Omega)
$$

Thus, by using differential forms, we can state the system of partial differential equations (4.1) and its integrability condition (4.3) in coordinate-free form. The proof of Theorem 4.5 works not only simply connected domain $U \subset \mathbb{R}^{m}$ but also simply connected m-manifold, and thus, we have

Theorem 4.7. Let Ω be an $\mathrm{M}_{n}(\mathbb{R})$-valued 1 -form on a simply connected m-manifold M satisfying (4.6). Then for each $\mathrm{P}_{0} \in M$ and $F_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique $n \times n$-matrix valued function $F: M \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfying (4.5) with $F(\mathrm{P})=F_{0}$. Moreover,

- if $F_{0} \in \mathrm{GL}(n, \mathbb{R}), F(\mathrm{P}) \in \mathrm{GL}(n, \mathbb{R})$ holds on M,
- if $F_{0} \in \mathrm{SO}(m)$ and Ω is skew-symmetric, $F(\mathrm{P}) \in \mathrm{SO}(m)$ holds on M.

When $n=1$, that is, Ω is a usual 1-form, $\Omega \wedge \Omega$ always vanishes, and the integrability condition (4.6) is simply $d \Omega=0$. Then we have the following Poncaré's lemma ${ }^{8}$.

Theorem 4.8 (Poincaré's lemma). If a differential 1-form ω defined on a simply connected and connected m-manifold M is closed, that is, $d \omega=0$ holds, then there exists a C^{∞}-function f on U such that $d f=\omega$. Such a function f is unique up to additive constants.
Proof. Since ω is closed, there exists a function F on M satisfying $d F=F \omega$ with initial condition $F\left(\mathrm{P}_{0}\right)=1$. By Lemma 4.3, F does not vanish on M, that is, $F>0$. Hence $f:=\log F$ is a smooth function on M satisfying $d f=d F / F=F \omega / F=\omega$. Take another function g on M satisfying $d g=\omega, d(f-g)=0$ holds. Then connectedness of M infers that $f-g$ is constant.

4.3 Curvature form

Let U be a domain of n-dimensional Riemannian manifold (M, g). We let Ω be the connection form with respect to an orthonormal frame $\left[e_{1}, \ldots, e_{n}\right]$ on U, as defined in Definition 3.15.
Definition 4.9. We define a skew-symmetric matrix-valued 2-form by $K:=d \Omega+\Omega \wedge \Omega$ and call the curvature form with respect to the frame $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$.

Take an orthonormal frame $\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$ on U and take a gauge transformation $\Theta: U \rightarrow \mathrm{O}(n)$:

$$
\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \Theta
$$

Denoting the connection form and the curvature form with respect to $\left[\boldsymbol{v}_{j}\right]$ by $\widetilde{\Omega}$ and \widetilde{K}. Then
Proposition 4.10. (1) $\Omega=\Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \Theta$, (2) $K=\Theta^{-1} \widetilde{K} \Theta$.
Proof. Since

$$
\begin{aligned}
{\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \Omega } & =\nabla\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\nabla\left(\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \Theta\right)=\nabla\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \Theta+\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] d \Theta \\
& =\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \widetilde{\Omega} \Theta+\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] d \Theta=\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \Theta^{-1}(\widetilde{\Omega} \Theta+d \Theta)
\end{aligned}
$$

the first assertion is obtained. Next, noticing $d(\widetilde{\Omega} \Theta)=(d \widetilde{\Omega}) \Theta-\widetilde{\Omega} \wedge d \Theta, \widetilde{\Omega} \Theta^{-1} \wedge \Theta \widetilde{\Omega}=\widetilde{\Omega} \wedge \widetilde{\Omega}$, and so on, we have

$$
\begin{aligned}
d \Omega & +\Omega \wedge \Omega=d\left(\Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \Theta\right)+\left(\Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \Theta\right) \wedge\left(\Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \Theta\right) \\
= & -\Theta^{-1} d \Theta \Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \widetilde{\Omega} \Theta-\Theta^{-1} \widetilde{\Omega} \wedge d \Theta-\Theta^{-1} d \Theta \Theta^{-1} \wedge d \Theta \\
& +\Theta^{-1} \widetilde{\Omega} \Theta \wedge \Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \Theta \wedge \Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} \widetilde{\Omega} \Theta \wedge \Theta^{-1} d \Theta+\Theta^{-1} d \Theta \wedge \Theta^{-1} d \Theta \\
= & \Theta^{-1}(d \widetilde{\Omega}+\widetilde{\Omega} \wedge \widetilde{\Omega}) \Theta
\end{aligned}
$$

proving (2).

[^1]The goal of this section is to prove the following
Theorem 4.11. Let U be a domain of a Riemannian n-manifold (M, g) and K the curvature form with respect to an orthonormal frame $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ on U. For a point $\mathrm{P} \in U$, there exists a local coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ around P such that $\left[\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right]$ is an orthonormal frame if and only if K vanishes on a neighborhood of P .

Remark 4.12. By (2) of Proposition 4.10, the condition $K=0$ does not depend on choice of orthonormal frames. A Riemannian manifold (M, g) said to be flat if $K=0$ holds on M.

Proof of Theorem 4.11. First, we shall show the "only if" part: Let $\left(x^{1}, \ldots, x^{n}\right)$ be a coordinate system such that $\left[\boldsymbol{e}_{j}:=\partial / \partial x^{j}\right]$ is an orthonormal frame. Since

$$
\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]=\left[\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right]=\mathbf{0}
$$

Proposition 4.2 yields that all components of the connection forms ω_{i}^{j} vanish. Hene we have $K=0$.
Conversely, assume $K=0$ for an orthonormal frame $\left[\boldsymbol{e}_{j}\right]$. Since the connection form Ω satisfies $d \Omega+\Omega \wedge \Omega=O$, there exists a matrix-valued function $\Theta: V \rightarrow \mathrm{SO}(n)$ satisfying $d \Theta=\Theta \Omega$, $\Theta(\mathrm{P})=$ id on a sufficiently small neighborhood V of P , because of Theorem 4.5. Take a new orthonormal frame $\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]:=\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \Theta^{-1}$. Then by (1) of Proposition 4.10, the connection form $\widetilde{\Omega}=\left(\tilde{\omega}_{i}^{j}\right)$ with respect to $\left[\boldsymbol{v}_{j}\right]$ vanishes identically. So by Lemma $3.17, d \omega^{i}=0$ holds for $i=1, \ldots, n$. Hence by the Poincaré Lemma (Theorem 4.8), there exists a smooth functions on a neighborhood V of P . Such $\left(x^{1}, \ldots, x^{n}\right)$ is a desired coordinate system if V is sufficiently small.

Exercises

4-1 Consider a Riemannian metric

$$
g=d r^{2}+\{\varphi(r)\}^{2} d \theta^{2} \quad \text { on } \quad U:=\left\{(r, \theta) ; 0<r<r_{0},-\pi<\theta<\pi\right\}
$$

where $r_{0} \in(0,+\infty]$ and φ is a positive smooth function defined on $\left(0, r_{0}\right)$ with

$$
\lim _{r \rightarrow+0} \varphi(r)=0, \quad \lim _{r \rightarrow+0} \varphi^{\prime}(r)=1
$$

Find a function φ such that (U, g) is flat. (Hint: $[\partial / \partial r,(1 / \varphi) \partial / \partial \theta)]$ is an orthonormal frame.)
4-2 Compute the curvature form of $H^{2}(-1)$ with respect to an orthonormal frame $\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ as in Exercise 3-2.

[^0]: 4. July, 2022.
 ${ }^{7} \mathrm{GL}(n, \mathbb{R})$ denotes the set of $n \times n$-regular matrices.
[^1]: ${ }^{8}$ Theorem 2.6 in Advanced Topics in Geometry E (MTH.B501).

