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5 The Sectional Curvature

5.1 Preliminaries

Exterior products of tangent vectors. Let V be an n-dimensional vector space (1 £ n < o)
and denote by V* its dual. Then (V*)* can be naturally identified with V itself. In fact,

I:Vovr— Iy e (V)" :={A: V" = R;linear}, Iy(a) := a(v)

is a linear map with trivial kernel. Then I is an isomorphism because dim(V*)* = dim V.
We denote by A2V := AZ(V*)* the set of skew-symmetric bilinear forms on V*. For vectors v,
w € V, the exterior product of them is an element of A2V defined as

(v Aw)(a, B) == a(v)B(w) — a(w)B(v) (o, BEVT).
For a basis [e1,...,e,] on V,
(5.1) {e;Nej;1Si<jSn}

is a basis of A?V. In particular dim A%V = in(n —1). When V is a vector space endowed with an

inner product {, ) and [ey,...,e,] is an orthonormal basis, there exists the unique inner product,
which is also denoted by (, ), of A2V such that (5.1) is an orthonormal basis. This definition
of the inner product does not depend on choice of orthonormal bases of V. In fact, take another
orthonormal basis [v1,...,v,] related with [e;] by

le1,...,en] = [v1,...,v,]0 O =(#))cO(n).
Since OT =071, [vy,...,v,] = [e1,...,€,]OT holds. Hence
Vs ANy = (Z 9§ei> A Zﬁgej = ZH?H;(ei Nej) = Z (0705 — 030;)(e: N ej),
i j i i<j
and so

(Vs ANV, Uy AUy) = Z (0705 — 030;) (0107 — 01'07) (e: A ej,ex N er)

1<j,k<l
= Y (6365 —6;60) (667 — 6167)5udj = Y (6;6] — 0300) (6165 — 60367
i<j,k<l 1<j
= (6:050707 — 03010107 — 056101107 + 050101107
1<j
= 05010107 + > 0500107 — > 03010107 + > 05010107
1< 1<j (> (>
_ st pu v st pupv
= 0500107 — > 03010107
7] 7]
= (0010107 — 03010107) — > (0501007 — 05010107
— -

— 5su5tv _ 5tu55v

because Y, 050! = §°'. So, if s < t and u < v, the second term of the right-hand side vanishes.

That is, {vs Av;; s < t} is an orthonormal basis as well as {e; Ae;; i < j} is.

12. July, 2023.
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Symmetric bilinear forms. Let V be a real vector space. A bilinear map ¢q: V x V — R is
said to be symmetric if g(v,w) = g(w,v) for all v, w € V.

Lemma 5.1. Two symmetric bilinear forms q and q' coincide with each other if and only if
q(v,v) = ¢ (v,v) hold for allv e V.

Proof. By symmetricity, ¢(v,w) = %(q(v +w,v+w) — q(v,v) — g(w,w)) holds. O

5.2 Sectional Curvature

Let U be a domain on a Riemannian n-manifold (M, g), and [ey, ..., e,] an orthonormal frame on
U. Denote by (w/)j=1,..n, 2 = (w})ij=1,..n and K = (k)i=1,n = d2+ 2 A £2 the dual frame,
the connection form and the curvature form with respect to the frame [e;]. Then Lemma 3.17 and
Definition 4.9, we have

(5.2) dw? = Zwl Awl, K] = dwl + Zwlj Awh.
1 ]

Since (2 is a one form valued in the skew-symmetric matrices, so is K:

Proposition 5.2 (The first Bianchi identity). «’(ex,e;) + £4(er, e;) + j(ej, ex) = 0.
Proof. By (5.2) and (3.11),

Oddwid<2ws/\wi> :Z(dws/\wi—ws/\wi)

S

:Z (Z(wm/\wfn)/\wé—ws/\ (ni—Zw%AdwT))

m

m
:Zwm/\wﬁq/\wi—FZws/\w%@/\wT—Zws/\mi
s,m s5,m S
:ZwmA(wfn/\wieri/\wfn)waS/\ni:waS/\/si.
s,m s s

Hence

0=> (W Arl)(ej en er) = Y (w(e))ri(er, er) +w'(er)ri(er e;) +w'(er)rl(e;, ex))

S S

= (6K (e, er) + OiKL (e, e) + 6 kL(e;, ex))

S

= K}(ex, e1) + ki (er, €) + Kj(ej, ex),
proving the assertion. O
Corollary 5.3. /ﬁé(ek,el) = ki (e;, €j).

Proof. By Proposition 5.2,

Kh(er, er) + ki (er, €5) + Ki(ej, ex)

0

/si(ei, e) + (e, er) + n{(ek, e;)=0
k

i 0

(er,€:) + K] (e, €5)

Summing up these and noticing k! = —k7, we have the conclusion. O



25 MTH.B506; Sect. 5

A quadratic form induced from the curvature form. We fix a point p € U. Under the
notation above, we can define a bilinear map

(54)  K(Emn) = > rlene)fn?, &= Mexne, n=> n'eine;

i<jk<l k<l i<j

on A*T, M, where e, k7 ..are considered tangent vectors, 2-forms at the fixed point p. In fact, one
can show that the definition (5.4) is independent of choice of orthonormal frames. As a immediate
conclusion of Corollary 5.3, we have

Lemma 5.4. K is symmetric.
Hence, taking Lemma 5.1 into an account, we define the sectional curvature as follows:

Definition 5.5. Let II, C T, M be a 2-dimensional linear subspace in T, M. The sectional curva-
ture of (M, g) with respect to the plane II, is a number

K(II,) = K(v ANw,v Aw),
where {v, w} is an orthonormal basis of II,

Remark 5.6. For (not necessarily orthonormal) basis {x,y} of II,, the sectional curvature is ex-
pressed as
K(zNy,zAy)

K(IT,) = (x ANy, z A y) ’

where (, ) of the right-hand side is the inner product of A?T,M induced from the Riemannian
metric.

Remark 5.7. The sectional curvature is a scalar corresponding to a 2-plane in the tangent space
T,M. Hence it can be considered as a function of 2-Grassmanian bundle induced from the tangent
bundle T M.

5.3 Curvature Tensor

Let (M, g) be a Riemannian manifold and V the Levi-Civita connection. Define a trilinear map
(5.5)
R: X(M) x X(M) x X(M) > (X,Y,Z) = R(X,Y)Z =VxVyZ - VyVxZ —Vixy]Z € X(M).

By the properties Lemma 3.6 of the connection and the property (3.4) of the Lie bracket, the
following Lemma is obvious.

Lemma 5.8. For any function f € F(M) and vector fields X, Y, Z € X(M),
R(fX,Y)7 = R(X, [Y)Z = R(X,Y)(fZ) = [R(X,Y)Z
holds.

Corollary 5.9. Assume the vector fields X,Y, Z and X, Y, Ze X(M) satisfy X, = )?p, Y, = lN/p
and Z, = Z, for a point p € M. Then

(R(X,Y)Z), = (R(X,Y)Z),.
In other words, R in (5.5) induces a trilinear map

Ry,: T,M x T,M x T,M — T, M.
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Definition 5.10. A trilinear map R(X,Y)Z is called the curvature tensor of (M, g). In addition,
a quadrilinear map
R(X.Y,2,T) = (R(X,Y)Z,T) : X(M)" — F(M)

is also called the curvature tensor. In fact, R € I'(T*M @ T*M @ T*M @ T*M), that is R is
(0, 4)-tensor field, because R induces a quadrilinear map

R: (T,M)* =R
for each p € M.

Lemma 5.11. Let {ei,...,e,} be an orthonormal frame on a domain U C M, and K = (k1) the
curvature form with respect to the frame. Then it holds that

KI(X.Y) = R(X,Y,e;,e;)
for each (i,7).
So by (5.3), Proposition 5.2, Corollary 5.3 yield
Proposition 5.12. e RX,Y,Z,T)=-R(Y,X,Z,T)=-R(X,Y,T,2),
e« RIX,Y,ZT)+R(Y,Z, X, T)+ R(Z,X,Y, T)=0,
e« RX,Y,Z,T)=R(ZT,X,Y).
Moreover, the sectional curvature K (II,) in Definition 5.5 is computed by

P A

(5.6) - .
<SC,$> <y7y> - (sc,y)

Ezxercises
5-1 Consider a Riemannian metric
g =dr? + {p(r)}? db? on U:={(r0);0<r<ry—m<l<mr},

where 79 € (0,400] and ¢ is a positive smooth function defined on (0,r¢) with

: _ _op(r)
r1—1>r£0 CP(T) o 0, r1—1>I-r|-10 r =1

Classify the function ¢ so that g is of constant sectional curvature.

5-2 Let M C R™*! be an embedded submanifold endowed with the Riemannian metric induced
from the canonical Euclidean metric of R**!. Then the position vector z(p) of p € M induces
a smooth map
x: M >pr— x(p) € R"

which is an (n + 1)-tuple of C'*°-functions. Let [eq,...,ey] be an orthonormal frame defined
on a domain U C M. Since T,M C R™"!, we can consider that e; is a smooth map from
U — R"*1. Take a dual basis (w?) to [e;]. Prove that

n
dx = E e;jw’
=1

holds on U. Here, we regard that dx is an (n + 1)-tuple of differential forms and e; is an
R"*1_valued function for each j.



