5 The Sectional Curvature

5.1 Preliminaries

Exterior products of tangent vectors. Let V be an n-dimensional vector space $(1 \leqq n<\infty)$ and denote by V^{*} its dual. Then $\left(V^{*}\right)^{*}$ can be naturally identified with V itself. In fact,

$$
I: V \ni \boldsymbol{v} \longmapsto I \boldsymbol{v} \in\left(V^{*}\right)^{*}:=\left\{A: V^{*} \rightarrow \mathbb{R} ; \text { linear }\right\}, \quad I \boldsymbol{v}(\alpha):=\alpha(\boldsymbol{v})
$$

is a linear map with trivial kernel. Then I is an isomorphism because $\operatorname{dim}\left(V^{*}\right)^{*}=\operatorname{dim} V$.
We denote by $\wedge^{2} V:=\wedge^{2}\left(V^{*}\right)^{*}$ the set of skew-symmetric bilinear forms on V^{*}. For vectors \boldsymbol{v}, $\boldsymbol{w} \in V$, the exterior product of them is an element of $\wedge^{2} V$ defined as

$$
(\boldsymbol{v} \wedge \boldsymbol{w})(\alpha, \beta):=\alpha(\boldsymbol{v}) \beta(\boldsymbol{w})-\alpha(\boldsymbol{w}) \beta(\boldsymbol{v}) \quad\left(\alpha, \beta \in V^{*}\right)
$$

For a basis $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ on V,

$$
\begin{equation*}
\left\{\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j} ; 1 \leqq i<j \leqq n\right\} \tag{5.1}
\end{equation*}
$$

is a basis of $\wedge^{2} V$. In particular $\operatorname{dim} \wedge^{2} V=\frac{1}{2} n(n-1)$. When V is a vector space endowed with an inner product \langle,$\rangle and \left[e_{1}, \ldots, e_{n}\right]$ is an orthonormal basis, there exists the unique inner product, which is also denoted by \langle,$\rangle , of \wedge^{2} V$ such that (5.1) is an orthonormal basis. This definition of the inner product does not depend on choice of orthonormal bases of V. In fact, take another orthonormal basis $\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$ related with $\left[\boldsymbol{e}_{j}\right]$ by

$$
\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \Theta \quad \Theta=\left(\theta_{i}^{j}\right) \in \mathrm{O}(n)
$$

Since $\Theta^{T}=\Theta^{-1},\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]=\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \Theta^{T}$ holds. Hence

$$
\boldsymbol{v}_{s} \wedge \boldsymbol{v}_{t}=\left(\sum_{i} \theta_{s}^{i} \boldsymbol{e}_{i}\right) \wedge\left(\sum_{j} \theta_{t}^{j} \boldsymbol{e}_{j}\right)=\sum_{i, j} \theta_{i}^{s} \theta_{j}^{t}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}\right)=\sum_{i<j}\left(\theta_{i}^{s} \theta_{j}^{t}-\theta_{j}^{s} \theta_{i}^{t}\right)\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}\right)
$$

and so

$$
\begin{aligned}
\left\langle\boldsymbol{v}_{s} \wedge \boldsymbol{v}_{t}, \boldsymbol{v}_{u} \wedge \boldsymbol{v}_{v}\right\rangle & =\sum_{i<j, k<l}\left(\theta_{i}^{s} \theta_{j}^{t}-\theta_{j}^{s} \theta_{i}^{t}\right)\left(\theta_{k}^{u} \theta_{l}^{v}-\theta_{l}^{u} \theta_{k}^{v}\right)\left\langle\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}, \boldsymbol{e}_{k} \wedge \boldsymbol{e}_{l}\right\rangle \\
& =\sum_{i<j, k<l}\left(\theta_{i}^{s} \theta_{j}^{t}-\theta_{j}^{s} \theta_{i}^{t}\right)\left(\theta_{k}^{u} \theta_{l}^{v}-\theta_{l}^{u} \theta_{k}^{v}\right) \delta_{i k} \delta_{j l}=\sum_{i<j}\left(\theta_{i}^{s} \theta_{j}^{t}-\theta_{j}^{s} \theta_{i}^{t}\right)\left(\theta_{i}^{u} \theta_{j}^{v}-\theta_{j}^{u} \theta_{i}^{v}\right) \\
& =\sum_{i<j}\left(\theta_{i}^{s} \theta_{j}^{t} \theta_{i}^{u} \theta_{j}^{v}-\theta_{j}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{j}^{v}-\theta_{i}^{s} \theta_{j}^{t} \theta_{j}^{u} \theta_{i}^{v}+\theta_{j}^{s} \theta_{i}^{t} \theta_{j}^{u} \theta_{i}^{v}\right) \\
& =\sum_{i<j} \theta_{i}^{s} \theta_{j}^{t} \theta_{i}^{u} \theta_{j}^{v}+\sum_{i<j} \theta_{j}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{j}^{v}-\sum_{i>j} \theta_{j}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{j}^{v}+\sum_{i>j} \theta_{i}^{s} \theta_{j}^{t} \theta_{i}^{u} \theta_{j}^{v} \\
& =\sum_{i \neq j} \theta_{i}^{s} \theta_{j}^{t} \theta_{i}^{u} \theta_{j}^{v}-\sum_{i \neq j} \theta_{j}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{j}^{v} \\
& =\sum_{i, j}\left(\theta_{i}^{s} \theta_{j}^{t} \theta_{i}^{u} \theta_{j}^{v}-\theta_{j}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{j}^{v}\right)-\sum_{i}\left(\theta_{i}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{i}^{v}-\theta_{i}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{i}^{v}\right) \\
& =\delta^{s u} \delta^{t v}-\delta^{t u} \delta^{s v}
\end{aligned}
$$

because $\sum_{i} \theta_{i}^{s} \theta_{i}^{t}=\delta^{s t}$. So, if $s<t$ and $u<v$, the second term of the right-hand side vanishes. That is, $\left\{\boldsymbol{v}_{s} \wedge \boldsymbol{v}_{t} ; s<t\right\}$ is an orthonormal basis as well as $\left\{\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j} ; i<j\right\}$ is.

Symmetric bilinear forms. Let V be a real vector space. A bilinear map $q: V \times V \rightarrow \mathbb{R}$ is said to be symmetric if $q(\boldsymbol{v}, \boldsymbol{w})=q(\boldsymbol{w}, \boldsymbol{v})$ for all $\boldsymbol{v}, \boldsymbol{w} \in V$.
Lemma 5.1. Two symmetric bilinear forms q and q^{\prime} coincide with each other if and only if $q(\boldsymbol{v}, \boldsymbol{v})=q^{\prime}(\boldsymbol{v}, \boldsymbol{v})$ hold for all $\boldsymbol{v} \in V$.

Proof. By symmetricity, $q(\boldsymbol{v}, \boldsymbol{w})=\frac{1}{2}(q(\boldsymbol{v}+\boldsymbol{w}, \boldsymbol{v}+\boldsymbol{w})-q(\boldsymbol{v}, \boldsymbol{v})-q(\boldsymbol{w}, \boldsymbol{w}))$ holds.

5.2 Sectional Curvature

Let U be a domain on a Riemannian n-manifold (M, g), and $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ an orthonormal frame on U. Denote by $\left(\omega^{j}\right)_{j=1, \ldots, n}, \Omega=\left(\omega_{i}^{j}\right)_{i, j=1, \ldots, n}$ and $K=\left(\kappa_{i}^{j}\right)_{i=1, \ldots, n}:=d \Omega+\Omega \wedge \Omega$ the dual frame, the connection form and the curvature form with respect to the frame $\left[\boldsymbol{e}_{j}\right]$. Then Lemma 3.17 and Definition 4.9, we have

$$
\begin{equation*}
d \omega^{j}=\sum_{l} \omega^{l} \wedge \omega_{l}^{j}, \quad \kappa_{i}^{j}=d \omega_{i}^{j}+\sum_{l} \omega_{l}^{j} \wedge \omega_{i}^{l} \tag{5.2}
\end{equation*}
$$

Since Ω is a one form valued in the skew-symmetric matrices, so is K :

$$
\begin{equation*}
\omega_{i}^{j}=-\omega_{j}^{i}, \quad \kappa_{i}^{j}=-\kappa_{j}^{i} . \tag{5.3}
\end{equation*}
$$

Proposition 5.2 (The first Bianchi identity). $\kappa_{j}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)+\kappa_{k}^{i}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{j}\right)+\kappa_{l}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)=0$.
Proof. By (5.2) and (3.11),

$$
\begin{aligned}
0 & =d d \omega^{i}=d\left(\sum_{s} \omega^{s} \wedge \omega_{s}^{i}\right)=\sum_{s}\left(d \omega^{s} \wedge \omega_{s}^{i}-\omega^{s} \wedge \omega_{s}^{i}\right) \\
& =\sum_{s}\left(\sum_{m}\left(\omega^{m} \wedge \omega_{m}^{s}\right) \wedge \omega_{s}^{i}-\omega^{s} \wedge\left(\kappa_{s}^{i}-\sum_{m} \omega_{m}^{i} \wedge d \omega_{s}^{m}\right)\right) \\
& =\sum_{s, m} \omega^{m} \wedge \omega_{m}^{s} \wedge \omega_{s}^{i}+\sum_{s, m} \omega^{s} \wedge \omega_{m}^{i} \wedge \omega_{s}^{m}-\sum_{s} \omega^{s} \wedge \kappa_{s}^{i} \\
& =\sum_{s, m} \omega^{m} \wedge\left(\omega_{m}^{s} \wedge \omega_{s}^{i}+\omega_{s}^{i} \wedge \omega_{m}^{s}\right)-\sum_{s} \omega^{s} \wedge \kappa_{s}^{i}=-\sum_{s} \omega^{s} \wedge \kappa_{s}^{i}
\end{aligned}
$$

Hence

$$
\begin{aligned}
0 & =\sum_{s}\left(\omega^{s} \wedge \kappa_{s}^{i}\right)\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)=\sum_{s}\left(\omega^{s}\left(\boldsymbol{e}_{j}\right) \kappa_{s}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)+\omega^{s}\left(\boldsymbol{e}_{k}\right) \kappa_{s}^{i}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{j}\right)+\omega^{s}\left(\boldsymbol{e}_{l}\right) \kappa_{s}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)\right) \\
& =\sum_{s}\left(\delta_{j}^{s} \kappa_{s}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)+\delta_{k}^{s} \kappa_{s}^{i}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{j}\right)+\delta_{l}^{s} \kappa_{s}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)\right) \\
& =\kappa_{j}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)+\kappa_{k}^{i}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{j}\right)+\kappa_{l}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)
\end{aligned}
$$

proving the assertion.
Corollary 5.3. $\kappa_{j}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)=\kappa_{l}^{k}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)$.
Proof. By Proposition 5.2,

$$
\begin{aligned}
\kappa_{j}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)+\kappa_{k}^{i}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{j}\right)+\kappa_{l}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right) & =0 \\
\kappa_{k}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)+\kappa_{i}^{j}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{k}\right)+\kappa_{l}^{j}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{i}\right) & =0 \\
\kappa_{i}^{k}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{l}\right)+\kappa_{j}^{k}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{i}\right)+\kappa_{l}^{k}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right) & =0
\end{aligned}
$$

Summing up these and noticing $\kappa_{i}^{j}=-\kappa_{j}^{i}$, we have the conclusion.

A quadratic form induced from the curvature form. We fix a point $p \in U$. Under the notation above, we can define a bilinear map

$$
\begin{equation*}
\boldsymbol{K}(\boldsymbol{\xi}, \boldsymbol{\eta}):=\sum_{i<j, k<l} \kappa_{i}^{j}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right) \xi^{k l} \eta^{i j}, \quad \boldsymbol{\xi}=\sum_{k<l} \xi^{k l} \boldsymbol{e}_{k} \wedge \boldsymbol{e}_{l}, \quad \boldsymbol{\eta}=\sum_{i<j} \eta^{i j} \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j} \tag{5.4}
\end{equation*}
$$

on $\wedge^{2} T_{p} M$, where $\boldsymbol{e}_{j}, \kappa_{i}^{j} \ldots$ are considered tangent vectors, 2 -forms at the fixed point p. In fact, one can show that the definition (5.4) is independent of choice of orthonormal frames. As a immediate conclusion of Corollary 5.3, we have

Lemma 5.4. K is symmetric.
Hence, taking Lemma 5.1 into an account, we define the sectional curvature as follows:
Definition 5.5. Let $\Pi_{p} \subset T_{p} M$ be a 2-dimensional linear subspace in $T_{p} M$. The sectional curvature of (M, g) with respect to the plane Π_{p} is a number

$$
K\left(\Pi_{p}\right):=\boldsymbol{K}(\boldsymbol{v} \wedge \boldsymbol{w}, \boldsymbol{v} \wedge \boldsymbol{w})
$$

where $\{\boldsymbol{v}, \boldsymbol{w}\}$ is an orthonormal basis of Π_{p}
Remark 5.6. For (not necessarily orthonormal) basis $\{\boldsymbol{x}, \boldsymbol{y}\}$ of Π_{p}, the sectional curvature is expressed as

$$
K\left(\Pi_{p}\right)=\frac{\boldsymbol{K}(\boldsymbol{x} \wedge \boldsymbol{y}, \boldsymbol{x} \wedge \boldsymbol{y})}{\langle\boldsymbol{x} \wedge \boldsymbol{y}, \boldsymbol{x} \wedge \boldsymbol{y}\rangle}
$$

where \langle,$\rangle of the right-hand side is the inner product of \wedge^{2} T_{p} M$ induced from the Riemannian metric.
Remark 5.7. The sectional curvature is a scalar corresponding to a 2-plane in the tangent space $T_{p} M$. Hence it can be considered as a function of 2-Grassmanian bundle induced from the tangent bundle $T M$.

5.3 Curvature Tensor

Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita connection. Define a trilinear map (5.5)

$$
R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y, Z) \mapsto R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \in \mathfrak{X}(M)
$$

By the properties Lemma 3.6 of the connection and the property (3.4) of the Lie bracket, the following Lemma is obvious.

Lemma 5.8. For any function $f \in \mathcal{F}(M)$ and vector fields $X, Y, Z \in \mathfrak{X}(M)$,

$$
R(f X, Y) Z=R(X, f Y) Z=R(X, Y)(f Z)=f R(X, Y) Z
$$

holds.
Corollary 5.9. Assume the vector fields X, Y, Z and $\widetilde{X}, \widetilde{Y}, \widetilde{Z} \in \mathfrak{X}(M)$ satisfy $X_{p}=\widetilde{X}_{p}, Y_{p}=\widetilde{Y}_{p}$ and $Z_{p}=\widetilde{Z}_{p}$ for a point $p \in M$. Then

$$
(R(X, Y) Z)_{p}=(R(\widetilde{X}, \widetilde{Y}) \widetilde{Z})_{p}
$$

In other words, R in (5.5) induces a trilinear map

$$
R_{p}: T_{p} M \times T_{p} M \times T_{p} M \rightarrow T_{p} M
$$

Definition 5.10. A trilinear map $R(X, Y) Z$ is called the curvature tensor of (M, g). In addition, a quadrilinear map

$$
R(X, Y, Z, T)=\langle R(X, Y) Z, T\rangle: \mathfrak{X}(M)^{4} \rightarrow \mathcal{F}(M)
$$

is also called the curvature tensor. In fact, $R \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes T^{*} M \otimes T^{*} M\right)$, that is R is (0,4)-tensor field, because R induces a quadrilinear map

$$
R:\left(T_{p} M\right)^{4} \rightarrow \mathbb{R}
$$

for each $p \in M$.
Lemma 5.11. Let $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ be an orthonormal frame on a domain $U \subset M$, and $K=\left(\kappa_{i}^{j}\right)$ the curvature form with respect to the frame. Then it holds that

$$
\kappa_{i}^{j}(X, Y)=R\left(X, Y, \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)
$$

for each (i, j).
So by (5.3), Proposition 5.2, Corollary 5.3 yield
Proposition 5.12. - $R(X, Y, Z, T)=-R(Y, X, Z, T)=-R(X, Y, T, Z)$,

- $R(X, Y, Z, T)+R(Y, Z, X, T)+R(Z, X, Y, T)=0$,
- $R(X, Y, Z, T)=R(Z, T, X, Y)$.

Moreover, the sectional curvature $K\left(\Pi_{p}\right)$ in Definition 5.5 is computed by

$$
\begin{equation*}
K\left(\Pi_{p}\right)=\frac{R(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{y}, \boldsymbol{x})}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle\langle\boldsymbol{y}, \boldsymbol{y}\rangle-\langle\boldsymbol{x}, \boldsymbol{y}\rangle^{2}} \tag{5.6}
\end{equation*}
$$

Exercises

5-1 Consider a Riemannian metric

$$
g=d r^{2}+\{\varphi(r)\}^{2} d \theta^{2} \quad \text { on } \quad U:=\left\{(r, \theta) ; 0<r<r_{0},-\pi<\theta<\pi\right\}
$$

where $r_{0} \in(0,+\infty]$ and φ is a positive smooth function defined on $\left(0, r_{0}\right)$ with

$$
\lim _{r \rightarrow+0} \varphi(r)=0, \quad \lim _{r \rightarrow+0} \frac{\varphi(r)}{r}=1
$$

Classify the function φ so that g is of constant sectional curvature.
5-2 Let $M \subset \mathbb{R}^{n+1}$ be an embedded submanifold endowed with the Riemannian metric induced from the canonical Euclidean metric of \mathbb{R}^{n+1}. Then the position vector $\boldsymbol{x}(p)$ of $p \in M$ induces a smooth map

$$
\boldsymbol{x}: M \ni p \longmapsto \boldsymbol{x}(p) \in \mathbb{R}^{n+1}
$$

which is an $(n+1)$-tuple of C^{∞}-functions. Let $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ be an orthonormal frame defined on a domain $U \subset M$. Since $T_{p} M \subset \mathbb{R}^{n+1}$, we can consider that \boldsymbol{e}_{j} is a smooth map from $U \rightarrow \mathbb{R}^{n+1}$. Take a dual basis $\left(\omega^{j}\right)$ to $\left[\boldsymbol{e}_{j}\right]$. Prove that

$$
d \boldsymbol{x}=\sum_{j=1}^{n} \boldsymbol{e}_{j} \omega^{j}
$$

holds on U. Here, we regard that $d \boldsymbol{x}$ is an $(n+1)$-tuple of differential forms and \boldsymbol{e}_{j} is an \mathbb{R}^{n+1}-valued function for each j.

