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6 Space forms

6.1 Constant sectional curvature
Let (M, g) be a Riemannian n-manifold, and let
Gra(TM) := U, Gra(T, M),
Gro(Tp,M) = 2-Grassmannian of T, M = {II,, C T,M ; 2-dimensional subspace}.
The sectional curvature defined in Definition 5.5 is a map K: Gro(TM) — R such that
K(II,) == K(v ANw,v A w),

where {v, w} is the orthonormal basis of II,,.

Fix a point p, and take an orthornormal frame [ey,...,e,] defined on a neighborhood U of p.
Denote by (w’), 2 = (w!) and K = (k) the dual frame, the connection form and the curvature
form with respect to the frame [e;], respectively.

Theorem 6.1. Assume there exists a real number k such that K(IL,) = k for all 2-dimensional
subspace 11, € T,M for a fized p. Then the curvature form is expressed as

H; =kw' Aw’.
Conversely, the curvature form is written as above, the sectional curvature at p is constant k.
Proof. By the assumption, k = K (Span{e;, e;}) = K(e; Aej, e; A ej) = k' (e;, ;). Let
v := cos fe; + sinfe;, w = cos pe; + sin pe,,
where {3, 5} # {l,m}, and set Iy , := Span{v,w} C T, M. Then by biliniearity of the A-product
on T, M, it holds that
v A w = cosfcospe; A e + cosfsinpe; A e, + sinf cospe; A e +sinldsinpe; A ey,.
Since {v, w} is an orthonormal basis of Il ., biliniearity and symmetricity of K implies
(6.1) k=K(Ilp,) = K(vAw,vAw)
=cos? O cos® oK (e; A ej,e; Ae) +cos? Osin oK (e; A e, e; Aen)
+ sin? 6 cos® eK(ej Nej,ej Nep) + sin? 6 sin? eK(ej Nem,e;Ney)
+ 2cos? 6 cos psin oK(e; Neje; Ney)+2 cos 0 sin 6 cos® oK(e; Nej,ej Nejp)
+2cosfsinfcos psinp(K(e; ANej,ej ANen)+ K(e; Aem,e; Aep))
+ 2 cos 0 sin 0 sin® oK (e Nem,e; Ney)+ 2sin? 6 cos @ sin oK(e; Nej,ej Nen)
=k + 2(cos2 6 cos psin K (e; A ej, e; A ey,) + cosfsin b cos® oK (e; A ey, e; Nep)
+ cosfsinfcospsin p(K(e; Nej,e; ANey) + K(e; Aen,ej Aep))
+ cosfsinfsin® 9K (e; A ey, ejNey)+ sin? 6 cos ¢ sin vK(ej Nej,ej A em)).
So, by letting 8 = 0, we have
(6.2) K(e; Neje; ANey) =0.

Similarly, letting 6 = 7/2, ¢ = 0 and ¢ = 7/2, we have K(e; Aej, e; Ney) = K(e;Nej,ejAep) =
K(e; A ey, e; Aeyp)=0. Hence the equality (6.1) implies

K(eiNej,ejNey)+ K(e; Ney,e; Aey) =0.

25. July, 2022.



MTH.B506; Sect. 6 28

By definition (5.4), this is equivalent to
Ky (ei,er) + né-(ei, em) = —(kl (e, e) + Ii{(ei, em))-
Then by Proposition 5.2, we have
O == K‘Z‘n(e’ia el) + K"lj(e% em) == Kj‘zn(eh el) - Hz(evm el) - K“Zn(ela ei) = 2“{;@(6% el) - Kz(ema el)'

Exchanging the roles of i and m, it holds that 2«7 (e,,, e;) — r, (e, e;) = 0. So we have

(6.3) wl(eme) =0 (if {i,j} # {m,1}).
On the other hand, (6.2) means that ng (e;,e) = Iig (ej,e;) = 0 when | # ¢,j. Summing up, we
have
j k i, 3) = (k1
W (en, €r) = (4, 7) .( 1)
0 otherwise,

proving the theorem. O
We now consider the case that the assumption of Theorem 6.1 holds for each p € M.

Theorem 6.2. Assume that for each p, there exists a real number k(p) such that K(II,) = k(p)
for any I, € Gra(T,M). Then the function k: M > p — k(p) € R is constant provided that M is
connected.

Proof. By taking the exterior derivative of K,g = dwf + Y. wl Aws, it holds that

dk] = d(dw?) +ng A dw; dew‘Z Awj

= (ni—wa/\wE)/\wf—Zwﬁ/\(nf—wa/\wf),
s t

and hence we have the identity
(6.4) k! = Z (k] Awf —w! AKD),
which is known as the second Bianchi identity. By our assumption, Theorem 6.1 implies that
k] = kw' Aw’. Then by Lemma 3.17,
dk! = d(kw') Aw? — kw' Adw? = dk A w® Aw? + kdw® AW — kw' A do?
=dk Aw' AW —|—ka3 Awl AW —kai/\ws/\wg =dk Aw' AW —|—dmf
s s

holds for each i and j. Thus, dk A w? Aw? = 0 for all ¢ and j, which implies dk = 0. This equality
is independent of choice of orthonormal frames. Since M is connected, k is constant. O

6.2 Space forms

Let (M, g) be a Riemannian n-manifold. A path ~: [0,400) — M is said to be a divergence path
if for any compact subset K € M, there exists to € (0, +00) such that v([tg, +o0)) € M \ K. If
any divergent path has infinite length, (M, g) is said to be complete.” In particular, a compact
Riemannian manifold without boundary is automatically complete.

9Usually, completeness is defined in terms of geodesics: A Riemannian manifold (M, g) is complete if any geodesics
are defined on entire R. The definition here is one of the equivalent conditions of completeness, expressed in the
Hopf-Rinow theorem. cf. MTH.B505.
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Definition 6.3. An n-dimensional space form is a complete Riemannian n-manifold of constant
sectional curvature.

Example 6.4. The Euclidean n-space is a space form of constant sectional curvature 0. In fact,
let (z',...,2™) be the canonical Cartesian coordinate system and set e; = 9/0x7. Then [e;] is
an orthornormal frame defined on the entire R", and Propositions 4.1 and 4.2 implies that the
connection form wj- = 0. Hence the curvature forms vanish, and then the sectional curvature is
identically zero.

So it is sufficient to show completeness. Let v: [0, +00) — R™ be a divergent path. Then for
each r > 0, there exists ¢y > 0 such that |y(t)| > r holds on [tg, +00), equivalently, |y(¢)| — +oo
as t — +o00. So the length L of the curve 7 is

/Ot (1) dr
0

Here, we used the triangle inequality of integrals for vector-valued functions'©.

= lim |y(t) =~y(0)| 2 1im |y(t)] = [v(0)] = +o0.

t—+oo ~ t—+4oco

¢
o : S 1
L= lim /0 |5 ()| dr = t£+moo

t——+o0

6.3 The Hyperbolic spaces

Let H"(—c?) be the hyperbolic n-space defined, where ¢ is a non-zero constant:
n 2 0 n n+1 1
H'(—c"):=qx=(z",...,2") € R] (@), = ——,cx0>0¢,
c

where (RY ™, (', ), ) be the Lorentz-Minkowski (n+1)-space. The tangent space T H™(—c?) is the
orthogonal complement x* of @, and the restriction g of the inner product (, ); to Tx H"(—c?)
is positive definite. Thus, (H"(—c?), gg) is a Riemannian manifold, called the hyperbolic n-space.

Theorem 6.5. The hyperbolic space (H"(—c?),ggr) is of constant sectional curvature —c?.

Proof. Notice that H"(—c?) can be expressed as a graph 20 = 1{/1+c2((z")?2+--- + (z")?)
defined on the (z!,...,2™)-hyperplane, that is, it is covered by single chart. Then there exists
a orthonormal frame field [ei,...,e,] defined on entire H"(—c?). Denote by (w'), 2 = (w!)
and K = (x7) the dual frame, the connection form and the curvature form with respect to [e;],
respectively.

Regarding T H"(—c?) as a linear subspace in R?H, we can consider e; as a vector-valued
function. In addition the position vector & € H"(—c?) can be also regarded as a vector-valued
function. Since TpH"(—c?) = =,

(6.5) F = (ep,e1,...,€,): H'(=c*) = M, 11(R) ey =cx
gives a pseudo orthornormal frame along H™(—c?), that is, FIYF =Y (Y := diag(—1,1,...,1))

holds.
As seen in Exercise 5-2, it holds that

(6.6) deg = cdx = cZonej.
j=1
On the other hand, for each j = 1,...,n, decompose the vector-valued one form de; as

dej = hjeo + E ozjes,
s

10Gee, for example, Theorem A.1.4 in [UY17] for n = 2. The idea of the proof works for general n.
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where h; and o are one forms on H"(—c?). Here,
hj = — <d€j,€0>L =—d <ej,eO>L + <ej;deO>L = cwj7

and ,
Ozj = <dejveS>L = d<ej7eS>L - <ej7deS>L = —of.

Differentiating (6.6), it holds that

0= %ddeo = Z(dw-jej —wi Ndej) = Zws ANwliej — ij Najes = ZZw A (Wl —ad)e;
3. g»s

J
because w?/ A w? = 0. Thus, we have Y w® A (w! — o) =0, and then
0= <Zw Al - af)) (61, €m) = ( (€m) — f (em) — (i (e1) — ad(en),

0= (W' (er) — o' (er)) — (wi"(e5) — i (e))) = —(wl, (1) — af, (1)) — (wi"(e;) — ] (e5)),

J
0= (wi,(e5) — al,(€5)) — (Wi(em) — ali(em)) = —(wi" (&) — 7" (e))) + (] (€m) — o (€m)),
which conclude that wlj = a{ . Summing up, we have

(6.7) de; = cwie +Zw es.

Then the frame F in (6.5) satisfies

(6.8) dF = FQ h G0 @’ d w:=(w' mT
: = , where “lew o0 an =(w,...,w
The integrability condition of (6.8) is
=5 Awl' Nw c (dwT +wh' A .Q)
O=d2+02n0= (c(dw—i—(}/\w) A2+ QN2+ PwAw! )

The lower-right components of the identity above yields
Kz + Wi Aw! =0.
Hence the sectional curvature of (H"(—c?),gn) = —c?. O

Remark 6.6. One can show the completeness of (H™(—c?), gy) (cf. MTH.B505). Hence the hyper-
bolic space is a simply connected space form of constant negative sectional curvature.

6.4 Isometries

A C*-map f: M — N between manifolds M and N induces a linear map

(df)p: TyM 3 X — (df)p(X) = 4

il ov(t) € Ty N,

t=0

where v: (—e,e) = M is a smooth curve with v(0) = p and §(0) = X, called the differential of f.
Since p € M is arbitrary, this induces a bundle homomorphism df : TM — T'N.

Definition 6.7. A vector field on N along a smooth map f: M — N isamap X: M — TN
satisfying m o X = f, where w: TN — N is the canonical projection.
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Then for each vector field X € X(M), df(X) is a vector field on N along f.

Definition 6.8. A C*®-map f: M — N between Riemannian manifolds (M, g) and (N, k) is called
a local isometry if dim M = dim N and f*h = g hold, that is,

X, Y) = h(df (X), df (V) = (X, Y)
holds for X, Y € T,M and p € M.
Lemma 6.9. A local isometry is an immersion.
Proof. Let [eq,...,ey,] be a (local) orthonormal frame of M, where n = dim M. Set v; := df(

€;
(j =1,...,n) for a smooth map f: (M,g) — (N,h). If f is a local isometry, [v1(p),...,v,(p)] is
an orthonormal system in T,y N, because

h(vi,v;) = h(df (€:), df (e;)) = [ h(ei, e;) = g(ei, €;).
Hence the differential (df), is of rank n. O

The proof of Lemma 6.9 suggests the following fact:

Corollary 6.10. A smooth map f: (M,g) — (N,h) is a local isometry if and only if for each
peM,

[V1,...,v,] :=[df (e1),...,df (e,)]

is an orthonormal frame for some orthonormal frame [e;] on a neighborhood of p.

6.5 Local uniqueness of space forms

Theorem 6.11. Let U C R" be a simply connected domain and g a Riemannian metric on U. If
the sectional curvature of (U, g) is constant k, there exists a local isometry f: U — N™(k), where

S™(k) (k>0)
N"(k) = R" (k=0)
H" (k) (k < 0).
Proof. Take an orthonormal frame [e1, ..., e,] on U, and let (w/), 2 = (w!) and K = (x!) be the

dual frame, the connection form, and the curvature form with respect to [e;], respectively. Since

the sectional curvature is constant k, ,%g = kw® A w’ holds for each (i,7), because of Theorem 6.1.
First, consider the case k = 0: In this case, K = df2 4+ 2 A {2 = O, and then by Theorem 4.5,
there exists the unique matrix valued function F: U — SO(n) satisfying

dF = F12, F(po) = id,

where pg € U is a fixed point. Decompose the matrix F into column vectors as F = [vy,...,V,],
and define an R™-valued one form
n
o= Z wjvj.
j=1

Then

do = Z(dwjvj — Wl /\dvj) = Z(ws/\wg)vj —Z(oﬂ /\w;>Us =0.

Jss J»s
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Hence by the Poincaré lemma (Theorem 4.8), there exists a smooth map f: U — R”™ satisfying
df = a. For such an f, it holds that

df (es) = a(es) ij €s)Vj = v,

for s =1,...,n. Hence [df(e1),...,df(e,)] = ['vl, ...,Uyp] is an orthonormal frame, and then f is
a local isometry because Corollary 6.10.
Next, consider the case k = —c? < 0. We set

~ 0 cwl
.= (cw 0 ) , where w=

n

as in (6.8) in Section ??. Since /sf = kwi Awl = —wi Awl, dQ2 + 2 A2 = O holds as seen in
Section ?7. Hence there exists an matrix valued function F: U — M,,41(R) satisfying

(6.9) dF =FQ,  Flpo) =id,
where pg € U is a fixed point. Notice that
-1 0 ... 0
~ ~ 0 1 ... 0
ATY +YQ=0 Y= .
0 O 1

holds, B B _ B
dFYF) = FovFr+ FY QT FT = F(Qy + YO FT = 0.

Hence, by the initial condition,
FYF' =Y, thatis, (FY)!=FTY.

Thus, we have

(6.10) FIYF=(FY) ' F=YFlF=Y.
Decompose F = [vg, v1,...,V,]. Then (6.10) is equivalent to
(6.11) —(vo,v0)p = (v1,v1)p = = (Vn,v0)p =1, (v5,v5) =0 (if i # j).

In particular, the O-th component of vy never vanishes, since

1= (00, 00) = — () + () -+ () o = (6,0, )
Moreover, by the initial condition vo(po) = (1,0,...,0)T,
(6.12) vy >0

holds.
Set f := 2vo. Then f: U — R is the desired map. In fact, by (6.11) and (6.12),

27

feH"(—c?) = {m =% ..., 2"T eRPH!

(@,@) = ——, ca® > 0}

and
df (e;) = dvo (ej) Zw (ej)vs = vj.

Hence [v;] = [e;] is an orthonormal frame because (6.11).
The case k > 0 is left as an exercise. O
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Ezxercises

6-1 Prove that the sphere
S3(1) ={xz eR*; (z,x) =1}

of radius 1 in the Euclidean 4-space is of constant sectional curvature 1.

6-2 Prove Theorem 6.11 for £k = 1 and n = 2, assuming Exercise 6-1.



