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6 Space forms

6.1 Constant sectional curvature

Let (M, g) be a Riemannian n-manifold, and let

Gr2(TM) := ∪p Gr2(TpM),

Gr2(TpM) := 2-Grassmannian of TpM = {Πp ⊂ TpM ; 2-dimensional subspace}.

The sectional curvature defined in Definition 5.5 is a map K : Gr2(TM) → R such that

K(Πp) := K(v ∧w,v ∧w),

where {v,w} is the orthonormal basis of Πp.
Fix a point p, and take an orthornormal frame [e1, . . . , en] defined on a neighborhood U of p.

Denote by (ωj), Ω = (ωj
i ) and K = (κj

i ) the dual frame, the connection form and the curvature
form with respect to the frame [ej ], respectively.

Theorem 6.1. Assume there exists a real number k such that K(Πp) = k for all 2-dimensional
subspace Πp ∈ TpM for a fixed p. Then the curvature form is expressed as

κi
j = kωi ∧ ωj .

Conversely, the curvature form is written as above, the sectional curvature at p is constant k.

Proof. By the assumption, k = K(Span{ei, ej}) = K(ei ∧ ej , ei ∧ ej) = κi
j(ei, ej). Let

v := cos θei + sin θej , w := cosϕel + sinϕem

where {i, j} 6= {l,m}, and set Πθ,ϕ := Span{v,w} ⊂ TpM . Then by biliniearity of the ∧-product
on TpM , it holds that

v ∧w = cos θ cosϕei ∧ el + cos θ sinϕei ∧ em + sin θ cosϕej ∧ el + sin θ sinϕej ∧ em.

Since {v,w} is an orthonormal basis of Πθ,ϕ, biliniearity and symmetricity of K implies

k =K(Πθ,ϕ) = K(v ∧w,v ∧w)(6.1)
=cos2 θ cos2 ϕK(ei ∧ el, ei ∧ el) + cos2 θ sin2 ϕK(ei ∧ em, ei ∧ em)

+ sin2 θ cos2 ϕK(ej ∧ el, ej ∧ el) + sin2 θ sin2 ϕK(ej ∧ em, ej ∧ em)

+ 2 cos2 θ cosϕ sinϕK(ei ∧ el, ei ∧ em) + 2 cos θ sin θ cos2 ϕK(ei ∧ el, ej ∧ el)

+ 2 cos θ sin θ cosϕ sinϕ(K(ei ∧ el, ej ∧ em) +K(ei ∧ em, ej ∧ el))

+ 2 cos θ sin θ sin2 ϕK(ei ∧ em, ej ∧ em) + 2 sin2 θ cosϕ sinϕK(ej ∧ el, ej ∧ em)

=k + 2
(
cos2 θ cosϕ sinϕK(ei ∧ el, ei ∧ em) + cos θ sin θ cos2 ϕK(ei ∧ el, ej ∧ el)

+ cos θ sin θ cosϕ sinϕ(K(ei ∧ el, ej ∧ em) +K(ei ∧ em, ej ∧ el))

+ cos θ sin θ sin2 ϕK(ei ∧ em, ej ∧ em) + sin2 θ cosϕ sinϕK(ej ∧ el, ej ∧ em)
)
.

So, by letting θ = 0, we have

(6.2) K(ei ∧ el, ei ∧ em) = 0.

Similarly, letting θ = π/2, ϕ = 0 and ϕ = π/2, we have K(ej ∧el, ej ∧em) = K(ei ∧el, ej ∧el) =
K(ei ∧ em, ej ∧ em) = 0. Hence the equality (6.1) implies

K(ei ∧ el, ej ∧ em) +K(ei ∧ em, ej ∧ el) = 0.
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By definition (5.4), this is equivalent to

κm
j (ei, el) + κl

j(ei, em) = −(κj
m(ei, el) + κj

l (ei, em)).

Then by Proposition 5.2, we have

0 = κj
m(ei, el) + κj

l (ei, em) = κj
m(ei, el)− κj

i (em, el)− κj
m(el, ei) = 2κj

m(ei, el)− κj
i (em, el).

Exchanging the roles of i and m, it holds that 2κj
i (em, el)− κj

m(ei, el) = 0. So we have

(6.3) κj
i (em, el) = 0 (if {i, j} 6= {m, l}).

On the other hand, (6.2) means that κj
i (ei, el) = κj

i (ej , el) = 0 when l 6= i, j. Summing up, we
have

κj
i (ek, el) =

{
k (i, j) = (k, l)

0 otherwise,

proving the theorem.

We now consider the case that the assumption of Theorem 6.1 holds for each p ∈ M .

Theorem 6.2. Assume that for each p, there exists a real number k(p) such that K(Πp) = k(p)
for any Πp ∈ Gr2(TpM). Then the function k : M 3 p → k(p) ∈ R is constant provided that M is
connected.

Proof. By taking the exterior derivative of κj
i = dωj

i +
∑

s ω
j
s ∧ ωs

i , it holds that

dκj
i = d(dωj

i ) +
∑
s

ωj
s ∧ dωs

i −
∑
s

dωj
s ∧ ωs

i

=
∑
s

(
κj
s −

∑
t

ωj
t ∧ ωt

s

)
∧ ωs

i −
∑
s

ωj
s ∧

(
κs
i −

∑
t

ωs
t ∧ ωt

i

)
,

and hence we have the identity

(6.4) dκj
i =

∑
s

(
κj
s ∧ ωs

i − ωj
s ∧ κs

i

)
,

which is known as the second Bianchi identity. By our assumption, Theorem 6.1 implies that
κj
i = kωi ∧ ωj . Then by Lemma 3.17,

dκj
i = d(kωi) ∧ ωj − kωi ∧ dωj = dk ∧ ωi ∧ ωj + kdωi ∧ ωj − kωi ∧ dωj

= dk ∧ ωi ∧ ωj +
∑
s

kωs ∧ ωi
s ∧ ωj −

∑
s

kωi ∧ ωs ∧ ωj
s = dk ∧ ωi ∧ ωj + dκj

i

holds for each i and j. Thus, dk ∧ ωi ∧ ωj = 0 for all i and j, which implies dk = 0. This equality
is independent of choice of orthonormal frames. Since M is connected, k is constant.

6.2 Space forms

Let (M, g) be a Riemannian n-manifold. A path γ : [0,+∞) → M is said to be a divergence path
if for any compact subset K ∈ M , there exists t0 ∈ (0,+∞) such that γ([t0,+∞)) ⊂ M \ K. If
any divergent path has infinite length, (M, g) is said to be complete.9 In particular, a compact
Riemannian manifold without boundary is automatically complete.

9Usually, completeness is defined in terms of geodesics: A Riemannian manifold (M, g) is complete if any geodesics
are defined on entire R. The definition here is one of the equivalent conditions of completeness, expressed in the
Hopf-Rinow theorem. cf. MTH.B505.
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Definition 6.3. An n-dimensional space form is a complete Riemannian n-manifold of constant
sectional curvature.

Example 6.4. The Euclidean n-space is a space form of constant sectional curvature 0. In fact,
let (x1, . . . , xn) be the canonical Cartesian coordinate system and set ej = ∂/∂xj . Then [ej ] is
an orthornormal frame defined on the entire Rn, and Propositions 4.1 and 4.2 implies that the
connection form ωi

j = 0. Hence the curvature forms vanish, and then the sectional curvature is
identically zero.

So it is sufficient to show completeness. Let γ : [0,+∞) → Rn be a divergent path. Then for
each r > 0, there exists t0 > 0 such that |γ(t)| > r holds on [t0,+∞), equivalently, |γ(t)| → +∞
as t → +∞. So the length L of the curve γ is

L = lim
t→+∞

∫ t

0

|γ̇(τ)| dτ = lim
t→+∞

∣∣∣∣∫ t

0

γ̇(τ) dτ

∣∣∣∣ = lim
t→+∞

|γ(t)− γ(0)| = lim
t→+∞

|γ(t)| − |γ(0)| = +∞.

Here, we used the triangle inequality of integrals for vector-valued functions10.

6.3 The Hyperbolic spaces

Let Hn(−c2) be the hyperbolic n-space defined, where c is a non-zero constant:

Hn(−c2) :=

{
x = (x0, . . . , xn) ∈ Rn+1

1

∣∣∣∣ 〈x,x〉L = − 1

c2
, cx0 > 0

}
,

where (Rn+1
1 , 〈 , 〉L) be the Lorentz-Minkowski (n+1)-space. The tangent space TxH

n(−c2) is the
orthogonal complement x⊥ of x, and the restriction gH of the inner product 〈 , 〉L to TxH

n(−c2)
is positive definite. Thus, (Hn(−c2), gH) is a Riemannian manifold, called the hyperbolic n-space.

Theorem 6.5. The hyperbolic space (Hn(−c2), gH) is of constant sectional curvature −c2.

Proof. Notice that Hn(−c2) can be expressed as a graph x0 = 1
c

√
1 + c2 ((x1)2 + · · ·+ (xn)2)

defined on the (x1, . . . , xn)-hyperplane, that is, it is covered by single chart. Then there exists
a orthonormal frame field [e1, . . . , en] defined on entire Hn(−c2). Denote by (ωi), Ω = (ωj

i )

and K = (κj
i ) the dual frame, the connection form and the curvature form with respect to [ej ],

respectively.
Regarding TxH

n(−c2) as a linear subspace in Rn+1
1 , we can consider ej as a vector-valued

function. In addition the position vector x ∈ Hn(−c2) can be also regarded as a vector-valued
function. Since TxH

n(−c2) = x⊥,

(6.5) F := (e0, e1, . . . , en) : H
n(−c2) → Mn+1(R) e0 = cx

gives a pseudo orthornormal frame along Hn(−c2), that is, FTY F = Y (Y := diag(−1, 1, . . . , 1))
holds.

As seen in Exercise 5-2, it holds that

(6.6) de0 = c dx = c

n∑
j=1

ωjej .

On the other hand, for each j = 1, . . . , n, decompose the vector-valued one form dej as

dej = hje0 +
∑
s

αs
jes,

10See, for example, Theorem A.1.4 in [UY17] for n = 2. The idea of the proof works for general n.
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where hj and αs
j are one forms on Hn(−c2). Here,

hj = −〈dej , e0〉L = −d 〈ej , e0〉L + 〈ej , de0〉L = cωj ,

and
αs
j = 〈dej , es〉L = d 〈ej , es〉L − 〈ej , des〉L = −αj

s.

Differentiating (6.6), it holds that

0 =
1

c
dde0 =

∑
j

(dωjej − ωj ∧ dej) =
∑
j,s

ωs ∧ ωj
sej −

∑
j,s

ωj ∧ αs
jes =

∑
j

∑
s

ωs ∧ (ωj
s − αj

s)ej

because ωj ∧ ωj = 0. Thus, we have
∑

s ω
s ∧ (ωj

s − αj
s) = 0, and then

0 =

(∑
s

ωs ∧ (ωj
s − αj

s)

)
(el, em) = (ωj

l (em)− αj
l (em))− (ωj

m(el)− αj
m(el)),

0 = (ωm
j (el)− αm

j (el))− (ωm
l (ej)− αm

l (ej)) = −(ωj
m(el)− αj

m(el))− (ωm
l (ej)− αm

l (ej)),

0 = (ωl
m(ej)− αl

m(ej))− (ωl
j(em)− αl

j(em)) = −(ωm
l (ej)− αm

l (ej)) + (ωj
l (em)− αj

l (em)),

which conclude that ωj
l = αj

l . Summing up, we have

(6.7) dej = cωje0 +
∑
s

ωs
jes.

Then the frame F in (6.5) satisfies

(6.8) dF = FΩ̃, where Ω̃ =

(
0 cωT

cω Ω

)
and ω := (ω1, . . . , ωn)T .

The integrability condition of (6.8) is

O = dΩ̃ + Ω̃ ∧ Ω̃ =

(
c2ωT ∧ ω c

(
dωT + ωT ∧Ω

)
c (dω +Ω ∧ ω) dΩ +Ω ∧Ω + c2ω ∧ ωT

)
.

The lower-right components of the identity above yields

κj
i + c2ωi ∧ ωj = 0.

Hence the sectional curvature of (Hn(−c2), gH) = −c2.

Remark 6.6. One can show the completeness of (Hn(−c2), gH) (cf. MTH.B505). Hence the hyper-
bolic space is a simply connected space form of constant negative sectional curvature.

6.4 Isometries

A C∞-map f : M → N between manifolds M and N induces a linear map

(df)p : TpM 3 X 7−→ (df)p(X) =
d

dt

∣∣∣∣
t=0

f ◦ γ(t) ∈ Tf(p)N,

where γ : (−ε, ε) → M is a smooth curve with γ(0) = p and γ̇(0) = X, called the differential of f .
Since p ∈ M is arbitrary, this induces a bundle homomorphism df : TM → TN .

Definition 6.7. A vector field on N along a smooth map f : M → N is a map X : M → TN
satisfying π ◦X = f , where π : TN → N is the canonical projection.
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Then for each vector field X ∈ X(M), df(X) is a vector field on N along f .

Definition 6.8. A C∞-map f : M → N between Riemannian manifolds (M, g) and (N,h) is called
a local isometry if dimM = dimN and f∗h = g hold, that is,

f∗h(X,Y ) := h(df(X), df(Y )) = g(X,Y )

holds for X, Y ∈ TpM and p ∈ M .

Lemma 6.9. A local isometry is an immersion.

Proof. Let [e1, . . . , en] be a (local) orthonormal frame of M , where n = dimM . Set vj := df(ej)
(j = 1, . . . , n) for a smooth map f : (M, g) → (N,h). If f is a local isometry, [v1(p), . . . ,vn(p)] is
an orthonormal system in Tf(p)N , because

h(vi,vj) = h(df(ei), df(ej)) = f∗h(ei, ej) = g(ei, ej).

Hence the differential (df)p is of rank n.

The proof of Lemma 6.9 suggests the following fact:

Corollary 6.10. A smooth map f : (M, g) → (N,h) is a local isometry if and only if for each
p ∈ M ,

[v1, . . . ,vn] := [df(e1), . . . , df(en)]

is an orthonormal frame for some orthonormal frame [ej ] on a neighborhood of p.

6.5 Local uniqueness of space forms

Theorem 6.11. Let U ⊂ Rn be a simply connected domain and g a Riemannian metric on U . If
the sectional curvature of (U, g) is constant k, there exists a local isometry f : U → Nn(k), where

Nn(k) =


Sn(k) (k > 0)

Rn (k = 0)

Hn(k) (k < 0).

Proof. Take an orthonormal frame [e1, . . . , en] on U , and let (ωj), Ω = (ωj
i ) and K = (κj

i ) be the
dual frame, the connection form, and the curvature form with respect to [ej ], respectively. Since
the sectional curvature is constant k, κj

i = kωi ∧ ωj holds for each (i, j), because of Theorem 6.1.
First, consider the case k = 0: In this case, K = dΩ +Ω ∧Ω = O, and then by Theorem 4.5,

there exists the unique matrix valued function F : U → SO(n) satisfying

dF = FΩ, F(p0) = id,

where p0 ∈ U is a fixed point. Decompose the matrix F into column vectors as F = [v1, . . . ,vn],
and define an Rn-valued one form

α :=

n∑
j=1

ωjvj .

Then

dα =

n∑
j=1

(
dωjvj − ωj ∧ dvj

)
=
∑
j,s

(
ωs ∧ ωj

s

)
vj −

∑
j,s

(
ωj ∧ ωs

j

)
vs = 0.
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Hence by the Poincaré lemma (Theorem 4.8), there exists a smooth map f : U → Rn satisfying
df = α. For such an f , it holds that

df(es) = α(es) =

n∑
j=1

ωj(es)vj = vs

for s = 1, . . . , n. Hence [df(e1), . . . , df(en)] = [v1, . . . ,vn] is an orthonormal frame, and then f is
a local isometry because Corollary 6.10.

Next, consider the case k = −c2 < 0. We set

Ω̃ :=

(
0 cωT

cω Ω

)
, where ω =

ω1

...
ωn


as in (6.8) in Section ??. Since κj

i = kωi ∧ ωj = −c2ωi ∧ ωj , dΩ̃ + Ω̃ ∧ Ω̃ = O holds as seen in
Section ??. Hence there exists an matrix valued function F : U → Mn+1(R) satisfying

(6.9) dF = FΩ̃, F(p0) = id,

where p0 ∈ U is a fixed point. Notice that

Ω̃TY + Y Ω̃ = O Y =


−1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


holds,

d(FY FT ) = FΩ̃Y FT + FY Ω̃TFT = F(Ω̃Y + Y Ω̃T )FT = O.

Hence, by the initial condition,

FY FT = Y, that is, (FY )−1 = FTY.

Thus, we have

(6.10) FTY F = (FY )−1F = Y F−1F = Y.

Decompose F = [v0,v1, . . . ,vn]. Then (6.10) is equivalent to

(6.11) −〈v0,v0〉L = 〈v1,v1〉L = · · · = 〈vn,vn〉L = 1, 〈vi,vj〉 = 0 (if i 6= j).

In particular, the 0-th component of v0 never vanishes, since

−1 = 〈v0,v0〉L = −(v00)
2 + (v10)

2 + · · ·+ (vn0 )
2 v0 = (v00 , v

1
0 , . . . , v

n
0 )

T .

Moreover, by the initial condition v0(p0) = (1, 0, . . . , 0)T ,

(6.12) v00 > 0

holds.
Set f := 1

cv0. Then f : U → Rn+1
1 is the desired map. In fact, by (6.11) and (6.12),

f ∈ Hn(−c2) =

{
x = (x0, . . . , xn)T ∈ Rn+1

1

∣∣∣∣ 〈x,x〉 = − 1

c2
, cx0 > 0

}
,

and

df(ej) =
1

c
dv0(ej) =

n∑
s=1

ωs(ej)vs = vj .

Hence [vj ] = [ej ] is an orthonormal frame because (6.11).
The case k > 0 is left as an exercise.
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Exercises

6-1 Prove that the sphere
S3(1) =

{
x ∈ R4 ; 〈x,x〉 = 1

}
of radius 1 in the Euclidean 4-space is of constant sectional curvature 1.

6-2 Prove Theorem 6.11 for k = 1 and n = 2, assuming Exercise 6-1.


