$6 \quad$ Space forms

6.1 Constant sectional curvature

Let (M, g) be a Riemannian n-manifold, and let

$$
\begin{aligned}
\operatorname{Gr}_{2}(T M):= & \cup_{p} \operatorname{Gr}_{2}\left(T_{p} M\right) \\
& \operatorname{Gr}_{2}\left(T_{p} M\right):=2 \text {-Grassmannian of } T_{p} M=\left\{\Pi_{p} \subset T_{p} M ; \text { 2-dimensional subspace }\right\} .
\end{aligned}
$$

The sectional curvature defined in Definition 5.5 is a map $K: \operatorname{Gr}_{2}(T M) \rightarrow \mathbb{R}$ such that

$$
K\left(\Pi_{p}\right):=\boldsymbol{K}(\boldsymbol{v} \wedge \boldsymbol{w}, \boldsymbol{v} \wedge \boldsymbol{w})
$$

where $\{\boldsymbol{v}, \boldsymbol{w}\}$ is the orthonormal basis of Π_{p}.
Fix a point p, and take an orthornormal frame $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ defined on a neighborhood U of p. Denote by $\left(\omega^{j}\right), \Omega=\left(\omega_{i}^{j}\right)$ and $K=\left(\kappa_{i}^{j}\right)$ the dual frame, the connection form and the curvature form with respect to the frame $\left[\boldsymbol{e}_{j}\right]$, respectively.
Theorem 6.1. Assume there exists a real number k such that $K\left(\Pi_{p}\right)=k$ for all 2-dimensional subspace $\Pi_{p} \in T_{p} M$ for a fixed p. Then the curvature form is expressed as

$$
\kappa_{j}^{i}=k \omega^{i} \wedge \omega^{j}
$$

Conversely, the curvature form is written as above, the sectional curvature at p is constant k.
Proof. By the assumption, $k=K\left(\operatorname{Span}\left\{\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\}\right)=\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}\right)=\kappa_{j}^{i}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)$. Let

$$
\boldsymbol{v}:=\cos \theta \boldsymbol{e}_{i}+\sin \theta \boldsymbol{e}_{j}, \quad \boldsymbol{w}:=\cos \varphi \boldsymbol{e}_{l}+\sin \varphi \boldsymbol{e}_{m}
$$

where $\{i, j\} \neq\{l, m\}$, and set $\Pi_{\theta, \varphi}:=\operatorname{Span}\{\boldsymbol{v}, \boldsymbol{w}\} \subset T_{p} M$. Then by biliniearity of the \wedge-product on $T_{p} M$, it holds that

$$
\boldsymbol{v} \wedge \boldsymbol{w}=\cos \theta \cos \varphi \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}+\cos \theta \sin \varphi \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}+\sin \theta \cos \varphi \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}+\sin \theta \sin \varphi \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}
$$

Since $\{\boldsymbol{v}, \boldsymbol{w}\}$ is an orthonormal basis of $\Pi_{\theta, \varphi}$, biliniearity and symmetricity of \boldsymbol{K} implies

$$
\begin{align*}
k= & K\left(\Pi_{\theta, \varphi}\right)=\boldsymbol{K}(\boldsymbol{v} \wedge \boldsymbol{w}, \boldsymbol{v} \wedge \boldsymbol{w}) \tag{6.1}\\
= & \cos ^{2} \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}\right)+\cos ^{2} \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}\right) \\
& +\sin ^{2} \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)+\sin ^{2} \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right) \\
& +2 \cos ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}\right)+2 \cos \theta \sin \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right) \\
& +2 \cos \theta \sin \theta \cos \varphi \sin \varphi\left(\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)\right) \\
& +2 \cos \theta \sin \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+2 \sin ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right) \\
= & k+2\left(\cos ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}\right)+\cos \theta \sin \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)\right. \\
& +\cos \theta \sin \theta \cos \varphi \sin \varphi\left(\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)\right) \\
& \left.+\cos \theta \sin \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\sin ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)\right)
\end{align*}
$$

So, by letting $\theta=0$, we have

$$
\begin{equation*}
\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}\right)=0 \tag{6.2}
\end{equation*}
$$

Similarly, letting $\theta=\pi / 2, \varphi=0$ and $\varphi=\pi / 2$, we have $\boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)=\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)=$ $\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)=0$. Hence the equality (6.1) implies

$$
\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)=0
$$

25. July, 2022.

By definition (5.4), this is equivalent to

$$
\kappa_{j}^{m}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)+\kappa_{j}^{l}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{m}\right)=-\left(\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)+\kappa_{l}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{m}\right)\right) .
$$

Then by Proposition 5.2, we have

$$
0=\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)+\kappa_{l}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{m}\right)=\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)-\kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)-\kappa_{m}^{j}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{i}\right)=2 \kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)-\kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)
$$

Exchanging the roles of i and m, it holds that $2 \kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)-\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)=0$. So we have

$$
\begin{equation*}
\kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)=0 \quad(\text { if }\{i, j\} \neq\{m, l\}) \tag{6.3}
\end{equation*}
$$

On the other hand, (6.2) means that $\kappa_{i}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)=\kappa_{i}^{j}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{l}\right)=0$ when $l \neq i, j$. Summing up, we have

$$
\kappa_{i}^{j}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)= \begin{cases}k & (i, j)=(k, l) \\ 0 & \text { otherwise }\end{cases}
$$

proving the theorem.
We now consider the case that the assumption of Theorem 6.1 holds for each $p \in M$.
Theorem 6.2. Assume that for each p, there exists a real number $k(p)$ such that $K\left(\Pi_{p}\right)=k(p)$ for any $\Pi_{p} \in \operatorname{Gr}_{2}\left(T_{p} M\right)$. Then the function $k: M \ni p \rightarrow k(p) \in \mathbb{R}$ is constant provided that M is connected.

Proof. By taking the exterior derivative of $\kappa_{i}^{j}=d \omega_{i}^{j}+\sum_{s} \omega_{s}^{j} \wedge \omega_{i}^{s}$, it holds that

$$
\begin{aligned}
d \kappa_{i}^{j} & =d\left(d \omega_{i}^{j}\right)+\sum_{s} \omega_{s}^{j} \wedge d \omega_{i}^{s}-\sum_{s} d \omega_{s}^{j} \wedge \omega_{i}^{s} \\
& =\sum_{s}\left(\kappa_{s}^{j}-\sum_{t} \omega_{t}^{j} \wedge \omega_{s}^{t}\right) \wedge \omega_{i}^{s}-\sum_{s} \omega_{s}^{j} \wedge\left(\kappa_{i}^{s}-\sum_{t} \omega_{t}^{s} \wedge \omega_{i}^{t}\right)
\end{aligned}
$$

and hence we have the identity

$$
\begin{equation*}
d \kappa_{i}^{j}=\sum_{s}\left(\kappa_{s}^{j} \wedge \omega_{i}^{s}-\omega_{s}^{j} \wedge \kappa_{i}^{s}\right), \tag{6.4}
\end{equation*}
$$

which is known as the second Bianchi identity. By our assumption, Theorem 6.1 implies that $\kappa_{i}^{j}=k \omega^{i} \wedge \omega^{j}$. Then by Lemma 3.17,

$$
\begin{aligned}
d \kappa_{i}^{j} & =d\left(k \omega^{i}\right) \wedge \omega^{j}-k \omega^{i} \wedge d \omega^{j}=d k \wedge \omega^{i} \wedge \omega^{j}+k d \omega^{i} \wedge \omega^{j}-k \omega^{i} \wedge d \omega^{j} \\
& =d k \wedge \omega^{i} \wedge \omega^{j}+\sum_{s} k \omega^{s} \wedge \omega_{s}^{i} \wedge \omega^{j}-\sum_{s} k \omega^{i} \wedge \omega^{s} \wedge \omega_{s}^{j}=d k \wedge \omega^{i} \wedge \omega^{j}+d \kappa_{i}^{j}
\end{aligned}
$$

holds for each i and j. Thus, $d k \wedge \omega^{i} \wedge \omega^{j}=0$ for all i and j, which implies $d k=0$. This equality is independent of choice of orthonormal frames. Since M is connected, k is constant.

6.2 Space forms

Let (M, g) be a Riemannian n-manifold. A path $\gamma:[0,+\infty) \rightarrow M$ is said to be a divergence path if for any compact subset $K \in M$, there exists $t_{0} \in(0,+\infty)$ such that $\gamma\left(\left[t_{0},+\infty\right)\right) \subset M \backslash K$. If any divergent path has infinite length, (M, g) is said to be complete. ${ }^{9}$ In particular, a compact Riemannian manifold without boundary is automatically complete.

[^0]Definition 6.3. An n-dimensional space form is a complete Riemannian n-manifold of constant sectional curvature.

Example 6.4. The Euclidean n-space is a space form of constant sectional curvature 0 . In fact, let $\left(x^{1}, \ldots, x^{n}\right)$ be the canonical Cartesian coordinate system and set $\boldsymbol{e}_{j}=\partial / \partial x^{j}$. Then [\boldsymbol{e}_{j}] is an orthornormal frame defined on the entire \mathbb{R}^{n}, and Propositions 4.1 and 4.2 implies that the connection form $\omega_{j}^{i}=0$. Hence the curvature forms vanish, and then the sectional curvature is identically zero.

So it is sufficient to show completeness. Let $\gamma:[0,+\infty) \rightarrow \mathbb{R}^{n}$ be a divergent path. Then for each $r>0$, there exists $t_{0}>0$ such that $|\gamma(t)|>r$ holds on $\left[t_{0},+\infty\right)$, equivalently, $|\gamma(t)| \rightarrow+\infty$ as $t \rightarrow+\infty$. So the length L of the curve γ is

$$
L=\lim _{t \rightarrow+\infty} \int_{0}^{t}|\dot{\gamma}(\tau)| d \tau \geqq \lim _{t \rightarrow+\infty}\left|\int_{0}^{t} \dot{\gamma}(\tau) d \tau\right|=\lim _{t \rightarrow+\infty}|\gamma(t)-\gamma(0)| \geqq \lim _{t \rightarrow+\infty}|\gamma(t)|-|\gamma(0)|=+\infty
$$

Here, we used the triangle inequality of integrals for vector-valued functions ${ }^{10}$.

6.3 The Hyperbolic spaces

Let $H^{n}\left(-c^{2}\right)$ be the hyperbolic n-space defined, where c is a non-zero constant:

$$
H^{n}\left(-c^{2}\right):=\left\{\boldsymbol{x}=\left(x^{0}, \ldots, x^{n}\right) \in \mathbb{R}_{1}^{n+1} \left\lvert\,\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{L}=-\frac{1}{c^{2}}\right., c x_{0}>0\right\}
$$

where $\left(\mathbb{R}_{1}^{n+1},\langle,\rangle_{L}\right)$ be the Lorentz-Minkowski $(n+1)$-space. The tangent space $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)$ is the orthogonal complement \boldsymbol{x}^{\perp} of \boldsymbol{x}, and the restriction g_{H} of the inner product \langle,\rangle_{L} to $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)$ is positive definite. Thus, $\left(H^{n}\left(-c^{2}\right), g_{H}\right)$ is a Riemannian manifold, called the hyperbolic n-space.

Theorem 6.5. The hyperbolic space $\left(H^{n}\left(-c^{2}\right), g_{H}\right)$ is of constant sectional curvature $-c^{2}$.
Proof. Notice that $H^{n}\left(-c^{2}\right)$ can be expressed as a graph $x^{0}=\frac{1}{c} \sqrt{1+c^{2}\left(\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}\right)}$ defined on the $\left(x^{1}, \ldots, x^{n}\right)$-hyperplane, that is, it is covered by single chart. Then there exists a orthonormal frame field $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ defined on entire $H^{n}\left(-c^{2}\right)$. Denote by $\left(\omega^{i}\right), \Omega=\left(\omega_{i}^{j}\right)$ and $K=\left(\kappa_{i}^{j}\right)$ the dual frame, the connection form and the curvature form with respect to $\left[\boldsymbol{e}_{j}\right]$, respectively.

Regarding $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)$ as a linear subspace in \mathbb{R}_{1}^{n+1}, we can consider \boldsymbol{e}_{j} as a vector-valued function. In addition the position vector $\boldsymbol{x} \in H^{n}\left(-c^{2}\right)$ can be also regarded as a vector-valued function. Since $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)=\boldsymbol{x}^{\perp}$,

$$
\begin{equation*}
\mathcal{F}:=\left(\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right): H^{n}\left(-c^{2}\right) \rightarrow \mathrm{M}_{n+1}(\mathbb{R}) \quad \boldsymbol{e}_{0}=c \boldsymbol{x} \tag{6.5}
\end{equation*}
$$

gives a pseudo orthornormal frame along $H^{n}\left(-c^{2}\right)$, that is, $\mathcal{F}^{T} Y \mathcal{F}=Y(Y:=\operatorname{diag}(-1,1, \ldots, 1))$ holds.

As seen in Exercise 5-2, it holds that

$$
\begin{equation*}
d \boldsymbol{e}_{0}=c d \boldsymbol{x}=c \sum_{j=1}^{n} \omega^{j} \boldsymbol{e}_{j} \tag{6.6}
\end{equation*}
$$

On the other hand, for each $j=1, \ldots, n$, decompose the vector-valued one form $d \boldsymbol{e}_{j}$ as

$$
d \boldsymbol{e}_{j}=h_{j} \boldsymbol{e}_{0}+\sum_{s} \alpha_{j}^{s} \boldsymbol{e}_{s}
$$

[^1]where h_{j} and α_{j}^{s} are one forms on $H^{n}\left(-c^{2}\right)$. Here,
$$
h_{j}=-\left\langle d \boldsymbol{e}_{j}, \boldsymbol{e}_{0}\right\rangle_{L}=-d\left\langle\boldsymbol{e}_{j}, \boldsymbol{e}_{0}\right\rangle_{L}+\left\langle\boldsymbol{e}_{j}, d \boldsymbol{e}_{0}\right\rangle_{L}=c \omega^{j}
$$
and
$$
\alpha_{j}^{s}=\left\langle d \boldsymbol{e}_{j}, \boldsymbol{e}_{s}\right\rangle_{L}=d\left\langle\boldsymbol{e}_{j}, \boldsymbol{e}_{s}\right\rangle_{L}-\left\langle\boldsymbol{e}_{j}, d \boldsymbol{e}_{s}\right\rangle_{L}=-\alpha_{s}^{j} .
$$

Differentiating (6.6), it holds that

$$
0=\frac{1}{c} d d \boldsymbol{e}_{0}=\sum_{j}\left(d \omega^{j} \boldsymbol{e}_{j}-\omega^{j} \wedge d \boldsymbol{e}_{j}\right)=\sum_{j, s} \omega^{s} \wedge \omega_{s}^{j} \boldsymbol{e}_{j}-\sum_{j, s} \omega^{j} \wedge \alpha_{j}^{s} \boldsymbol{e}_{s}=\sum_{j} \sum_{s} \omega^{s} \wedge\left(\omega_{s}^{j}-\alpha_{s}^{j}\right) \boldsymbol{e}_{j}
$$

because $\omega^{j} \wedge \omega^{j}=0$. Thus, we have $\sum_{s} \omega^{s} \wedge\left(\omega_{s}^{j}-\alpha_{s}^{j}\right)=0$, and then

$$
\begin{aligned}
& 0=\left(\sum_{s} \omega^{s} \wedge\left(\omega_{s}^{j}-\alpha_{s}^{j}\right)\right)\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{m}\right)=\left(\omega_{l}^{j}\left(\boldsymbol{e}_{m}\right)-\alpha_{l}^{j}\left(\boldsymbol{e}_{m}\right)\right)-\left(\omega_{m}^{j}\left(\boldsymbol{e}_{l}\right)-\alpha_{m}^{j}\left(\boldsymbol{e}_{l}\right)\right), \\
& 0=\left(\omega_{j}^{m}\left(\boldsymbol{e}_{l}\right)-\alpha_{j}^{m}\left(\boldsymbol{e}_{l}\right)\right)-\left(\omega_{l}^{m}\left(\boldsymbol{e}_{j}\right)-\alpha_{l}^{m}\left(\boldsymbol{e}_{j}\right)\right)=-\left(\omega_{m}^{j}\left(\boldsymbol{e}_{l}\right)-\alpha_{m}^{j}\left(\boldsymbol{e}_{l}\right)\right)-\left(\omega_{l}^{m}\left(\boldsymbol{e}_{j}\right)-\alpha_{l}^{m}\left(\boldsymbol{e}_{j}\right)\right), \\
& 0=\left(\omega_{m}^{l}\left(\boldsymbol{e}_{j}\right)-\alpha_{m}^{l}\left(\boldsymbol{e}_{j}\right)\right)-\left(\omega_{j}^{l}\left(\boldsymbol{e}_{m}\right)-\alpha_{j}^{l}\left(\boldsymbol{e}_{m}\right)\right)=-\left(\omega_{l}^{m}\left(\boldsymbol{e}_{j}\right)-\alpha_{l}^{m}\left(\boldsymbol{e}_{j}\right)\right)+\left(\omega_{l}^{j}\left(\boldsymbol{e}_{m}\right)-\alpha_{l}^{j}\left(\boldsymbol{e}_{m}\right)\right),
\end{aligned}
$$

which conclude that $\omega_{l}^{j}=\alpha_{l}^{j}$. Summing up, we have

$$
\begin{equation*}
d \boldsymbol{e}_{j}=c \omega^{j} \boldsymbol{e}_{0}+\sum_{s} \omega_{j}^{s} \boldsymbol{e}_{s} \tag{6.7}
\end{equation*}
$$

Then the frame \mathcal{F} in (6.5) satisfies

$$
d \mathcal{F}=\mathcal{F} \widetilde{\Omega}, \quad \text { where } \quad \widetilde{\Omega}=\left(\begin{array}{cc}
0 & c \boldsymbol{\omega}^{T} \tag{6.8}\\
c \boldsymbol{\omega} & \Omega
\end{array}\right) \quad \text { and } \quad \boldsymbol{\omega}:=\left(\omega^{1}, \ldots, \omega^{n}\right)^{T} .
$$

The integrability condition of (6.8) is

$$
O=d \widetilde{\Omega}+\widetilde{\Omega} \wedge \widetilde{\Omega}=\left(\begin{array}{cc}
c^{2} \boldsymbol{\omega}^{T} \wedge \boldsymbol{\omega} & c\left(d \boldsymbol{\omega}^{T}+\omega^{T} \wedge \Omega\right) \\
c(d \boldsymbol{\omega}+\Omega \wedge \boldsymbol{\omega}) & d \Omega+\Omega \wedge \Omega+c^{2} \boldsymbol{\omega} \wedge \boldsymbol{\omega}^{T}
\end{array}\right)
$$

The lower-right components of the identity above yields

$$
\kappa_{i}^{j}+c^{2} \omega^{i} \wedge \omega^{j}=0
$$

Hence the sectional curvature of $\left(H^{n}\left(-c^{2}\right), g_{H}\right)=-c^{2}$.
Remark 6.6. One can show the completeness of $\left(H^{n}\left(-c^{2}\right), g_{H}\right)$ (cf. MTH.B505). Hence the hyperbolic space is a simply connected space form of constant negative sectional curvature.

6.4 Isometries

A C^{∞}-map $f: M \rightarrow N$ between manifolds M and N induces a linear map

$$
(d f)_{p}: T_{p} M \ni X \longmapsto(d f)_{p}(X)=\left.\frac{d}{d t}\right|_{t=0} f \circ \gamma(t) \in T_{f(p)} N
$$

where $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ is a smooth curve with $\gamma(0)=p$ and $\dot{\gamma}(0)=X$, called the differential of f. Since $p \in M$ is arbitrary, this induces a bundle homomorphism $d f: T M \rightarrow T N$.

Definition 6.7. A vector field on N along a smooth map $f: M \rightarrow N$ is a map $X: M \rightarrow T N$ satisfying $\pi \circ X=f$, where $\pi: T N \rightarrow N$ is the canonical projection.

Then for each vector field $X \in \mathfrak{X}(M), d f(X)$ is a vector field on N along f.
Definition 6.8. A C^{∞}-map $f: M \rightarrow N$ between Riemannian manifolds (M, g) and (N, h) is called a local isometry if $\operatorname{dim} M=\operatorname{dim} N$ and $f^{*} h=g$ hold, that is,

$$
f^{*} h(X, Y):=h(d f(X), d f(Y))=g(X, Y)
$$

holds for $X, Y \in T_{p} M$ and $p \in M$.
Lemma 6.9. A local isometry is an immersion.
Proof. Let $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ be a (local) orthonormal frame of M, where $n=\operatorname{dim} M$. Set $\boldsymbol{v}_{j}:=d f\left(\boldsymbol{e}_{j}\right)$ $(j=1, \ldots, n)$ for a smooth map $f:(M, g) \rightarrow(N, h)$. If f is a local isometry, $\left[\boldsymbol{v}_{1}(p), \ldots, \boldsymbol{v}_{n}(p)\right]$ is an orthonormal system in $T_{f(p)} N$, because

$$
h\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)=h\left(d f\left(\boldsymbol{e}_{i}\right), d f\left(\boldsymbol{e}_{j}\right)\right)=f^{*} h\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=g\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)
$$

Hence the differential $(d f)_{p}$ is of rank n.
The proof of Lemma 6.9 suggests the following fact:
Corollary 6.10. A smooth map $f:(M, g) \rightarrow(N, h)$ is a local isometry if and only if for each $p \in M$,

$$
\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]:=\left[d f\left(\boldsymbol{e}_{1}\right), \ldots, d f\left(\boldsymbol{e}_{n}\right)\right]
$$

is an orthonormal frame for some orthonormal frame $\left[\boldsymbol{e}_{j}\right]$ on a neighborhood of p.

6.5 Local uniqueness of space forms

Theorem 6.11. Let $U \subset \mathbb{R}^{n}$ be a simply connected domain and g a Riemannian metric on U. If the sectional curvature of (U, g) is constant k, there exists a local isometry $f: U \rightarrow N^{n}(k)$, where

$$
N^{n}(k)= \begin{cases}S^{n}(k) & (k>0) \\ \mathbb{R}^{n} & (k=0) \\ H^{n}(k) & (k<0)\end{cases}
$$

Proof. Take an orthonormal frame $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ on U, and let $\left(\omega^{j}\right), \Omega=\left(\omega_{i}^{j}\right)$ and $K=\left(\kappa_{i}^{j}\right)$ be the dual frame, the connection form, and the curvature form with respect to [\boldsymbol{e}_{j}], respectively. Since the sectional curvature is constant $k, \kappa_{i}^{j}=k \omega^{i} \wedge \omega^{j}$ holds for each (i, j), because of Theorem 6.1.

First, consider the case $k=0$: In this case, $K=d \Omega+\Omega \wedge \Omega=O$, and then by Theorem 4.5, there exists the unique matrix valued function $\mathcal{F}: U \rightarrow \mathrm{SO}(n)$ satisfying

$$
d \mathcal{F}=\mathcal{F} \Omega, \quad \mathcal{F}\left(p_{0}\right)=\mathrm{id}
$$

where $p_{0} \in U$ is a fixed point. Decompose the matrix \mathcal{F} into column vectors as $\mathcal{F}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$, and define an \mathbb{R}^{n}-valued one form

$$
\boldsymbol{\alpha}:=\sum_{j=1}^{n} \omega^{j} \boldsymbol{v}_{j}
$$

Then

$$
d \boldsymbol{\alpha}=\sum_{j=1}^{n}\left(d \omega^{j} \boldsymbol{v}_{j}-\omega^{j} \wedge d \boldsymbol{v}_{j}\right)=\sum_{j, s}\left(\omega^{s} \wedge \omega_{s}^{j}\right) \boldsymbol{v}_{j}-\sum_{j, s}\left(\omega^{j} \wedge \omega_{j}^{s}\right) \boldsymbol{v}_{s}=\mathbf{0}
$$

Hence by the Poincaré lemma (Theorem 4.8), there exists a smooth map $f: U \rightarrow \mathbb{R}^{n}$ satisfying $d f=\boldsymbol{\alpha}$. For such an f, it holds that

$$
d f\left(\boldsymbol{e}_{s}\right)=\alpha\left(\boldsymbol{e}_{s}\right)=\sum_{j=1}^{n} \omega^{j}\left(\boldsymbol{e}_{s}\right) \boldsymbol{v}_{j}=\boldsymbol{v}_{s}
$$

for $s=1, \ldots, n$. Hence $\left[d f\left(\boldsymbol{e}_{1}\right), \ldots, d f\left(\boldsymbol{e}_{n}\right)\right]=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$ is an orthonormal frame, and then f is a local isometry because Corollary 6.10.

Next, consider the case $k=-c^{2}<0$. We set

$$
\widetilde{\Omega}:=\left(\begin{array}{cc}
0 & c \boldsymbol{\omega}^{T} \\
c \boldsymbol{\omega} & \Omega
\end{array}\right), \quad \text { where } \quad \boldsymbol{\omega}=\left(\begin{array}{c}
\omega^{1} \\
\vdots \\
\omega^{n}
\end{array}\right)
$$

as in (6.8) in Section ??. Since $\kappa_{i}^{j}=k \omega^{i} \wedge \omega^{j}=-c^{2} \omega^{i} \wedge \omega^{j}, d \widetilde{\Omega}+\widetilde{\Omega} \wedge \widetilde{\Omega}=O$ holds as seen in Section ??. Hence there exists an matrix valued function $\mathcal{F}: U \rightarrow \mathrm{M}_{n+1}(\mathbb{R})$ satisfying

$$
\begin{equation*}
d \mathcal{F}=\mathcal{F} \widetilde{\Omega}, \quad \mathcal{F}\left(p_{0}\right)=\mathrm{id} \tag{6.9}
\end{equation*}
$$

where $p_{0} \in U$ is a fixed point. Notice that

$$
\widetilde{\Omega}^{T} Y+Y \widetilde{\Omega}=O \quad Y=\left(\begin{array}{cccc}
-1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

holds,

$$
d\left(\mathcal{F} Y \mathcal{F}^{T}\right)=\mathcal{F} \widetilde{\Omega} Y \mathcal{F}^{T}+\mathcal{F} Y \widetilde{\Omega}^{T} \mathcal{F}^{T}=\mathcal{F}\left(\widetilde{\Omega} Y+Y \widetilde{\Omega}^{T}\right) \mathcal{F}^{T}=O
$$

Hence, by the initial condition,

$$
\mathcal{F} Y \mathcal{F}^{T}=Y, \quad \text { that is, } \quad(\mathcal{F} Y)^{-1}=\mathcal{F}^{T} Y
$$

Thus, we have

$$
\begin{equation*}
\mathcal{F}^{T} Y \mathcal{F}=(\mathcal{F} Y)^{-1} \mathcal{F}=Y \mathcal{F}^{-1} \mathcal{F}=Y \tag{6.10}
\end{equation*}
$$

Decompose $\mathcal{F}=\left[\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$. Then (6.10) is equivalent to

$$
\begin{equation*}
-\left\langle\boldsymbol{v}_{0}, \boldsymbol{v}_{0}\right\rangle_{L}=\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{1}\right\rangle_{L}=\cdots=\left\langle\boldsymbol{v}_{n}, \boldsymbol{v}_{n}\right\rangle_{L}=1, \quad\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle=0 \quad(\text { if } i \neq j) \tag{6.11}
\end{equation*}
$$

In particular, the 0 -th component of \boldsymbol{v}_{0} never vanishes, since

$$
-1=\left\langle\boldsymbol{v}_{0}, \boldsymbol{v}_{0}\right\rangle_{L}=-\left(v_{0}^{0}\right)^{2}+\left(v_{0}^{1}\right)^{2}+\cdots+\left(v_{0}^{n}\right)^{2} \quad \boldsymbol{v}_{0}=\left(v_{0}^{0}, v_{0}^{1}, \ldots, v_{0}^{n}\right)^{T} .
$$

Moreover, by the initial condition $\boldsymbol{v}_{0}\left(p_{0}\right)=(1,0, \ldots, 0)^{T}$,

$$
\begin{equation*}
v_{0}^{0}>0 \tag{6.12}
\end{equation*}
$$

holds.
Set $f:=\frac{1}{c} \boldsymbol{v}_{0}$. Then $f: U \rightarrow \mathbb{R}_{1}^{n+1}$ is the desired map. In fact, by (6.11) and (6.12),

$$
f \in H^{n}\left(-c^{2}\right)=\left\{\boldsymbol{x}=\left(x^{0}, \ldots, x^{n}\right)^{T} \in \mathbb{R}_{1}^{n+1} \left\lvert\,\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-\frac{1}{c^{2}}\right., c x^{0}>0\right\}
$$

and

$$
d f\left(\boldsymbol{e}_{j}\right)=\frac{1}{c} d \boldsymbol{v}_{0}\left(\boldsymbol{e}_{j}\right)=\sum_{s=1}^{n} \omega^{s}\left(\boldsymbol{e}_{j}\right) \boldsymbol{v}_{s}=\boldsymbol{v}_{j}
$$

Hence $\left[\boldsymbol{v}_{j}\right]=\left[\boldsymbol{e}_{j}\right]$ is an orthonormal frame because (6.11).
The case $k>0$ is left as an exercise.

Exercises

6-1 Prove that the sphere

$$
S^{3}(1)=\left\{\boldsymbol{x} \in \mathbb{R}^{4} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=1\right\}
$$

of radius 1 in the Euclidean 4-space is of constant sectional curvature 1.
6-2 Prove Theorem 6.11 for $k=1$ and $n=2$, assuming Exercise 6-1.

[^0]: ${ }^{9}$ Usually, completeness is defined in terms of geodesics: A Riemannian manifold (M, g) is complete if any geodesics are defined on entire \mathbb{R}. The definition here is one of the equivalent conditions of completeness, expressed in the Hopf-Rinow theorem. cf. MTH.B505.

[^1]: ${ }^{10}$ See, for example, Theorem A.1.4 in [UY17] for $n=2$. The idea of the proof works for general n.

