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1 Linear Ordinary Differential Equations

The fundamental theorem for ordinary differential equations. Consider a function
(1.1) f:IxU>s((tx)— f(t,x) e R™

of class C', where I C R is an interval and U C R™ is a domain in the Euclidean space R™. For
any fixed tg € I and xy € U, the condition

(1.2) %w(t) = f(t. (1)), x(ty) = xo

of an R™-valued function ¢t — «(t) is called the initial value problem of ordinary differential
equation for unknown function x(t). A function x: I — U satisfying (1.2) is called a solution of
the initial value problem.

Fact 1.1 (The existence theorem for ODE’s). Let f: I x U — R™ be a C'-function as in (1.1).
Then, for any xo € U and to € I, there exists a positive number ¢ and a C*-function x: I N (ty —
g,to+¢) = U satisfying (1.2).

Consider two solutions «;: J; = U (j = 1,2) of (1.2) defined on subintervals J; C I containing
to. Then the function x5 is said to be an extension of x; if J; C Jy and x2|;, = x1. A solution x
of (1.2) is said to be mazximal if there are no non-trivial extension of it.

Fact 1.2 (The uniqueness for ODE’s). The mazimal solution of (1.2) is unique.

Fact 1.3 (Smoothness of the solutions). If f: I x U — R™ is of class C" (r = 1,...,00), the
solution of (1.2) is of class C™™1. Here, oo + 1 = 00, as a convention.

Let V C R* be another domain of R* and consider a C'*°-function
(1.3) h: IxUxV >3 (t,z;a) = h(t,z; ) € R™.
For fixed to € I, we denote by x(t;xo, o) the (unique, maximal) solution of (1.2) for f(t,z) =
h(t,xz; o). Then
Fact 1.4. The map (t,xo; ) — x(t; o, ) is of class C.

Example 1.5. (1) Let m =1, I =R, U = R and f(¢t,2) = Az, where X is a constant. Then
z(t) = xg exp(At) defined on R is the maximal solution to

d
ix(t) = f(t,z(t)) = Mx(t), 2(0) = zo.

(2) Let m =2, I =R, U =R? and f(¢;(z,y)) = (y, —w?x), where w is a constant. Then

z(t)\ _ [ wocoswt+ L sinwt
y(t)) = \ —zwowsinwt + yo cos wt
is the unique solution of

d (20 _( v 2(0)\ _ (o
dt \y(t) —w?x(t))’ y(0) Y )’
defined on R. This differential equation can be considered a single equation

d? 9 dx

el = —wfa(t), 2(0) =z, T(O)=w

of order 2.
(3) Let m=1,I =R, U =R and f(t,x) = 1+ z?. Then x(t) = tant defined on (-3, %) is the

unique maximal solution of the initial value problem

—_— = 2 =
— 14+ 2%, x(0) = 0.

13. June, 2023. Revised: 20. June, 2023
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Linear Ordinary Differential Equations. The ordinary differential equation (1.2) is said to
be linear if the function (1.1) is a linear function in x, that is, a linear differential equation is in a
form

d
Zo(t) = A(t)a(t) + (),

where A(t) and b(t) are m x m-matrix-valued and R™-valued functions in ¢.

For the sake of later use, we consider, in this lecture, the special form of linear differential
equation for matrix-valued unknown functions as follows: Let M, (R) be the set of n X n-matrices
with real components, and take functions

2: 71— M,(R), andB: I — M,(R),

where I C R is an interval. Identifying M, (R) with R”z, we assume {2 and B are continuous
functions (with respect to the topology of R™ = M,(R)). Then we can consider the linear

ordinary differential equation for matrix-valued unknown X (¢) as
dX(¢)
dt

(1.4) = X()20) + B(t),  X(to) = Xo,
where X is given constant matrix.

Then, the fundamental theorem of linear ordinary equation states that the mazimal solution
of (1.4) is defined on whole I. To prove this, we prepare some materials related to matrix-valued
functions.

Preliminaries: Matrix Norms. Denote by M, (R) the set of n x n-matrices with real com-

ponents, which can be identified the vector space R™. In particular, the Euclidean norm of RY
induces a norm

(1.5) | X|g = 1/tr(XTX) =

on M, (R). On the other hand, we let

(16) i sup { B v e m (0},

where | - | denotes the Euclidean norm of R".
Lemma 1.6. (1) The map X — |X|m is a norm of M, (R).
(2) For X, Y € Mu(R), it holds that | XY |y < |X|u |Y |u.

(3) Let A = \(X) be the mazimum eigenvalue of semi-positive definite symmetric matriz XT X.
Then | X|x = VA holds.

4) (1/vn)IX[e £ [X|u £ | X]e.
(5) The map |- |v: Mu(R) — R is continuous with respect to the Euclidean norm.

Proof. Since | Xv|/|v] is invariant under scalar multiplications to v, we have | X |y = sup{|Xv|; v €
S7=1} where S"~1! is the unit sphere in R”. Since S"~! > & + |Az| € R is a continuous function
defined on a compact space, it takes the maximum. Thus, the right-hand side of (1.6) is well-

defined. It is easy to verify that | - |\ satisfies the axiom of the norm?.

X |m > 0 whenever X # O, |aX|m = || | X|Mm, and the triangle inequality.
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Since A := XT X is positive semi-definite, the eigenvalues Aj (j =1,...,n) are non-negative
real numbers. In particular, there exists an orthonormal basis [a;] of R™ satisfying Aa; = \;a;
(j =1,...,n). Let A be the maximum eigenvalue of A, and write v =v1a1 + -+ + vpa,. Then it
holds that

(Xv, Xv) = Mv? 4+ + 202 < X\ (v,v),

where (, ) is the Euclidean inner product of R”. The equality of this inequality holds if and only
if v is the A-eigenvector, proving (3). Noticing the norm (1.5) is invariant under conjugations X —
PTXP (P € O(n)), we obtain | X|g = /A2 + -+ + A2 by diagonalizing X7 X by an orthogonal
matrix P. Then we obtain (4). Hence two norms |- |g and |- |y induce the same topology as
M, (R). In particular, we have (5). O

Preliminaries: Matrix-valued Functions.

Lemma 1.7. Let X andY be C*°-maps defined on a domain U C R™ into M, (R). Then

0 0X oYy
1) —(XY)=_—Y+X_—
( ) 8’&]( ) an * an}
(2) idetX = tr ()~(8X>7 and
Buj (9uj
O v 19Xy
(3) 8qu =-X 8qu ,

where X is the cofactor matriz of X, and we assume in (3) that X is a regular matriz.

Proof. The formula (1) holds because the definition of matrix multiplication and the Leibnitz rule,
Denoting ' = 9/0u,;,
O=(d) =(X'X)=X"HX' + (X)X
implies (3), where id is the identity matrix.
Decompose the matrix X into column vectors as X = (x1,...,&,). Since the determinant is
multi-linear form for n-tuple of column vectors, it holds that

(det X) = det(x), @2, ..., x,) +det(z1,xh, ..., ®,) + - - +det(z, T2, ..., 2),).
Then by cofactor expansion of the right-hand side, we obtain (2). O

Proposition 1.8. Assume two C™ matriz-valued functions X (t) and 2(t) satisfy

(1.7) %t@) = X (¢)02(¢), X (to) = Xp.
Then
(1.8) det X (t) = (det Xg) exp /t tr 2(7) dr

holds. In particular, if Xo € GL(n,R),? then X(t) € GL(n,R) for all t.
Proof. By (2) of Lemma 1.7, we have

%det X(t) = tr (X(t)d);ft)) = tr (f((t)X(t)Q(t))
= tr(det X (£)£2(t)) = det X (¢) tr 22(t).

Here, we used the relation XX = XX = (det X)id3. Hence 4 (p(t)~1det X(t)) = 0, where p(t) is
the right-hand side of (1.8). O

2GL(n,R) = {A € M, (R); det A # 0}: the general linear group.
3In this lecture, id denotes the identity matrix.
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Corollary 1.9. If 2(t) in (1.7) satisfies tr 2(t) = 0, det X(t) is constant. In particular, if
Xo € SL(n,R), X is a function valued in SL(n,R) .

Proposition 1.10. Assume £2(t) in (1.7) is skew-symmetric for allt, that is, 27 + (2 is identically
O. If Xo € O(n) (resp. Xo € SO(n))®, then X (t) € O(n) (resp. X(t) € SO(n)) for all t.

Proof. By (1) in Lemma 1.7,
d o dX g ax\"
a X=X +X<dt)
=XXT+ X0TXT = x(2+ 0" XT = 0.
Hence X X7 is constant, that is, if Xy € O(n),
XX = X(t) X (te)" = Xo X =id.

If Xy € O(n), this proves the first case of the proposition. Since det A = +1 when A € O(n), the
second case follows by continuity of det X (¢). O

Preliminaries: Norms of Matrix-Valued functions. Let I = [a,b] be a closed interval, and
denote by C°(1, M, (R)) the set of continuous functions X : I — M, (R). For any positive number
k, we define

(1.9) | X || 1k o= sup {e ™| X (t)|m; t €I}
for X € C°(I,M,(R)). When k =0, || - ||1,0 is the uniform norm for continuous functions, which
is complete. Similarly, one can prove the following in the same way:

Lemma 1.11. The norm || - ||1.x on C°(I, M, (R)) is complete.

Linear Ordinary Differential Equations. We prove the fundamental theorem for linear or-
dinary differential equations.

Proposition 1.12. Let £2(t) be a C*°-function valued in M, (R) defined on an interval I. Then
for each ty € I, there exists the unique matriz-valued C™-function X (t) = Xy, ia(t) such that

(1.10) d%ft) = X)),  X(to) =id.

Proof. Uniqueness: Assume X (t) and Y (¢) satisfy (1.10). Then
v -x0) = [ ()= X @)ar= [ (o) - xeyema (=5

holds. Hence for an arbitrary closed interval J C I,

Y (t) = X(#)lm = <

/t Y (7) = X (1) |y [207) [y d

t
/ e* dr
to

ekt

||

/t |(Y(7') — X(T)).Q(T)|M dr

/ Y (1) = X (7)lg € |92(7) g dr

to

S Y = X||xsup [2]m
J

sup; |2 k(t—
=|Y—X||J,kp"k|| |Mekt‘1—e k(t=to)

48L(n,R) = {A € M, (R); det A = 1}; the special lienar group.
50(n) = {A € M, (R); ATA = AAT = id}: the orthogonal group; SO(n) = {A € O(n); det A = 1}: the special
orthogonal group.

= |\Y—X||J,ksgp|9|M
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holds for ¢t € J. Thus, for an appropriate choice of k € R, it holds that
1
1Y = Xlsx = SIY = X[k,
that is, ||Y — X||sx = 0, proving Y (t) = X (t) for ¢ € J. Since J is arbitrary, ¥ = X holds on I.

Existence: Let J := [tg,a] C I be a closed interval, and define a sequence {X;} of matrix-valued
functions defined on I satisfying X¢(t) = id and

¢

(1.11) Xin(t) = id+/ X;(m)2(r)dr (j=0,1,2,...).
to

Let k := 2sup; |2|m. Then

t
| Xj+1(t) = X;(O)m = / | X;(7) = X1 (7)[m|2(7) [m dr
to
ok(t—to)

L

sup [2|m||X; — X1k
J

for an appropriate choice of k € R, and hence || X;+1 — Xj||sx < (| X; — X;j_1][s, that is, {X;}
is a Cauchy sequence with respect to || - || 5. Thus, by completeness (Lemma 1.11), it converges
to some X € C°(J,M,,(R)). By (1.11), the limit X satisfies

X (to) =id, X(t) = id—|—/tt X(1)02(7) dr.

Applying the fundamental theorem of calculus, we can see that X satisfies X'(t) = X (¢)£2(¢t)
(" = d/dt). Since J can be taken arbitrarily, existence of the solution on I is proven.

Finally, we shall prove that X is of class C*°. Since X'(t) = X (¢)£2(t), the derivative X’ of
X is continuous. Hence X is of class C', and so is X (¢)£2(¢). Thus we have that X’(¢) is of class
C!', and then X is of class C2. Tterating this argument, we can prove that X (¢) is of class C" for
arbitrary r. O

Corollary 1.13. Let Q2(t) be a matriz-valued C*-function defined on an interval I. Then for
each to € I and Xo € M,,(R), there exists the unique matriz-valued C* -function Xy, x,(t) defined
on I such that

(112) O _ xam. X=X, (X() = X,x,0)

In particular, Xy, x,(t) is of class C* in Xy and t.

Proof. We rewrite X (t) in Proposition 1.12 as Y (¢) = Xy, ia(¢). Then the function
(1.13) X(t) := XoY (t) = XoXt,,a(t),

is desired one. Conversely, assume X (¢) satisfies the conclusion. Noticing Y'(¢) is a regular matrix
for all ¢ because of Proposition 1.8,

satisfies

dw  dX dy
— =Y l'-Xxy'—

-1 _ -1 _ -1 -1 _
7 7 7 Y =XNY XY 'Yy 0.

Hence
W(t) = W(to) = X (to)Y (to) ™" = Xo.

Hence the uniqueness is obtained. The final part is obvious by the expression (1.13). O
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Proposition 1.14. Let 2(t) and B(t) be matriz-valued C*°-functions defined on I. Then for each
to € I and Xy € M,,(R), there exists the unique matriz-valued C™ -function defined on I satisfying

(1.14) %t(t) — X021+ B(t),  X(to) = Xo.

Proof. Rewrite X in Proposition 1.12 as Y := X} jq. Then

(1.15) (Xo+/ B(t dT) Y (t)

satisfies (1.14). Conversely, if X satisfies (1.14), W := XY ! satisfies
X' =WY+WY' =WY+WYR, XQ2+B=WYQ+B,

and then we have W’ = BY ~1. Since W (ty) = X,
¢
W= Xo+ / B(T)Y (7)) dr.

Thus we obtain (1.15). O

Theorem 1.15. Let I and U be an interval and a domain in R™, respectively, and let Q(t, o) and
B(t, &) be matriz-valued C*-functions defined on I xU (v = (1, ..., ayy,)). Then for each ty € I,
a €U and Xo € M, (R), there exists the unique matriz-valued C®°-function X (t) = X1, x,.a(t)
defined on I such that

dX (t)
dt

(1.16) = X(1)Q(t ) + B(t,a),  X(to) = Xo.

Moreover,
I xIxM,(R)xU>(tte, Xo, o) = Xty x0.a(t) € Mu(R)
is a C*°-map.
Proof. Let Q(t,&) := Q2(t + to, &) and B(t,&) = B(t + to, a), and let X (t) := X (t + to). Then
(1.16) is equivalent to

aX(t) =

(1.17) = = X()2(t,a) + B(t,&), X(0) = Xo,

where & := (tg, a1, ...,am). There exists the unique solution X (f) = XO,Xo,d(t) of (1.17) for
each & because of Proposition 1.14. So it is sufficient to show differentiability with respect to the
parameter &. We set Z = Z(t) the unique solution of

dz -~ 002 OB
1.1 Lo+ X2 4 22 Z(0)=0.
(1.18) dt Oa; + oy’ (0)=0

Then it holds that Z = 8)?/8%-. In particular, by the proof of Proposition 1.14, it holds that

0X t o0(r,a)  OB(r, &)\ ..,
Z= Fo; </0<X() o T da )Y (T)d7>Y(t).

Here, Y (t) is the unique matrix-valued C*°-function satisfying Y'(t) = Y (£)£2(t, &), and Y (0) = id.
Hence X is a C*°-function in (¢, &). O
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Fundamental Theorem for Space Curves. As an application, we prove the fundamental
theorem for space curves. A C®°-map +v: I — R? defined on an interval I C R into R3 is said to
be a regular curve if 4 # 0 holds on I. For a regular curve «(t), there exists a parameter change
t = t(s) such that F(s) := v(t(s)) satisfies |5'(s)| = 1. Such a parameter s is called the arc-length
parameter.

Let v(s) be a regular curve in R? parametrized by the arc-length satisfying 4" (s) # 0 for all s.
Then

7" (s)

e(s) :==7'(s), n(s) := ) b(s) := e(s) x n(s)

forms a positively oriented orthonormal basis {e,n, b} of R? for each s. Regarding each vector as
column vector, we have the matrix-valued function

(1.19) F(s) := (e(s),n(s),b(s)) € SO(3).
in s, which is called the Frenet frame associated to the curve . Under the situation above, we set
k(s) == [7"(s)| >0, 7(s) == —(b'(s),n(s)),

which are called the curvature and torsion, respectively, of «. Using these quantities, the Frenet
frame satisfies

0 —k O

(1.20) az = F{2, N=|x 0 -7
ds

0 7 0

Proposition 1.16. The curvature and the torsion are invariant under the transformation x +—
Az +b of R? (A € SO(3), b € R?). Conversely, two curves v1(s), v2(s) parametrized by arc-
length parameter have common curvature and torsion, there exist A € SO(3) and b € R3 such that
’)/2 = A’yl —|— b

Proof. Let k, 7 and F; be the curvature, torsion and the Frenet frame of -1, respectively. Then
the Frenet frame of 45 = Ay, +b (A € SO(3), b € R?) is F» = AF;. Hence both F; and F; satisfy
(1.20), and then v, and 2 have common curvature and torsion.

Conversely, assume 1 and 3 have common curvature and torsion. Then the frenet frame Fi,
F> both satisfy (1.20). Let F be the unique solution of (1.20) with F(to) = id. Then by the
proof of Corollary 1.13, we have F;(t) = F;(to)F(t) (j = 1,2). In particular, since F; € SO(3),
Fo(t) = AF1(t) (A := Fa(to)Fi(to)™' € SO(3)). Comparing the first column of these, v4(s) =
A~i(t) holds. Integrating this, the conclusion follows. O

Theorem 1.17 (The fundamental theorem for space curves).

Let k(s) and 7(s) be C®-functions defined on an interval I satisfying k(s) > 0 on I. Then there
exists a space curve y(s) parametrized by arc-length whose curvature and torsion are k and T,
respectively. Moreover, such a curve is unique up to transformation © — Ax +b (A € SO(3),

b e R3) of R3.

Proof. We have already shown the uniqueness in Proposition 1.16. We shall prove the existence:
Let £2(s) be as in (1.20), and F(s) the solution of (1.20) with F(sg) = id. Since 2 is skew-
symmetric, F(s) € SO(3) by Proposition 1.10. Denoting the column vectors of F by e, n, b, and
let

1) 5= [ elo)do

S0

Then F is the Frenet frame of v, and k, and 7 are the curvature and torsion of v, respectively. [
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Ezxercises

1-1 Find the maximal solution of the initial value problem

dz
U =z(1—x), z(0) = a,

where b is a real number.

1-2 Find an explicit expression of a space curve «y(s) parametrized by the arc-length s, whose
curvature k and torsion 7 satisfy

V2(1 +s2)
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2 Integrability Conditions

Let U C R™ be a domain of (R™;u!,...,u™) and consider an m-tuple of n x n-matrix valued
C*°-maps
(2.1) 2;: R™ > U — M,(R) (j=1,...,m).

In this section, we consider an initial value problem of a system of linear partial differential equa-
tions

0X )
(22) @ :XQ] (] = ]-»am)a X(PO) :X07

where Pg = (u},...,u') € U is a fixed point, X is an n x n-matrix valued unknown, and X, €
M, (R).

Proposition 2.1. If a C*®-map X: U — M,(R) defined on a domain U C R™ satisfies (4.1)
with Xo € GL(n,R), then X(P) € GL(n,R) for all P € U. In addition, if £2; (j =1,...,m) are
skew-symmetric and Xo € SO(n), then X (P) € SO(n) holds for all P € U.

Proof. Since U is connected, there exists a continuous path ~g: [0,1] — U such that v(0) = Py
and vo(1) = P. By Whitney’s approximation theorem (cf. Theorem 6.21 in [Leel3]), there exists
a smooth path v: [0,1] — U joining Py and P approximating 0. Since X := X o satisfies (2.4)
with X (0) = X, Proposition 1.8 yields that det X (1) # 0 whenever det X # 0. Moreover, if £2;’s
are skew-symmetric, so is §2,(t) in (2.4). Thus, by Proposition 1.10, we obtain the latter half of
the proposition. O

Proposition 2.2. If a matriz-valued C* function X: U — GL(n,R) satisfies (4.1), it holds that
002; 08

for each (4,k) with 1 < j <k <m.

Proof. Differentiating (4.1) by u*, we have

02X X 092; 992;
uFoul  Ou gur X@ X(8 k

+Qk9>

On the other hand, switching the roles of j and k, we get

02X 082
o QuP _X<3 R Qk)

Since X is of class C'°°, the left-hand sides of these equalities coincide, and so are the right-hand
sides. Since X € GL(n,R), the conclusion follows. O

The equality (2.3) is called the integrability condition or compatibility condition of (4.1).
The chain rule yields the following:

Lemma 2.3. Let X: U — M,(R) be a C*-map satisfying (4.1). Then for each smooth path
~v: I — U defined on an interval I C R, X := X oy : I — M, (R) satisfies the ordinary differential
equation

(2.4) E(t) _ )A((t)Q»y(t) _Q,y(t) = Z 250 ’Y(t)%(t)

on I, where y(t) = (u!(t),...,u™(t)).
20. June, 2023. Revised: 27. June, 2023)




MTH.B506; Sect. 2 10

Lemma 2.4. Let 2;: U — M,(R) (j = 1,...,m) be C*-maps defined on a domain U C R™
which satisfy (2.3). Then for each smooth map

o: D3 (t,w) — o(t,w) = (u'(t,w),...,u™(t,w)) € U
defined on a domain D C R2, it holds that

o ow

2. T T =

(2.5) T W+WT =0,

where
T 0w 0w~

(2.6) T::Zrzjft, W::Z(Zj—w (2; == 2;00).
j=1 j=1

Proof. By the chain rule, we have

or 092, OuF oud i ~ 9%ud

w = 2 out ow ot 22 guar

OW O~ 092; Ou® ow in: ~ 0%l

ot A ouk 9t dw 7 otow

J:k: J=1
_ o2, Oud OuF "L 9%
Z 3w ot 0w 2= orgw
Hence

or ow i": <arzj a(zk> ouF ou

ow ot ouk  oui ) dw ot
7,k=1

Ui ouk ou’

= 2 (8- 28) 5050
7,k=1

" Ou ~ OuF ~ Ou T Ul
- (ZQ&S> <Z ’“aw>_<z aw> (Z at)

j=1 k=1 k=1 j=1
=TW — WT.

Thus (2.5) holds.

Integrability of linear systems. The main theorem in this section is the following theorem:

Theorem 2.5. Let £2;: U = M, (R) (j =1,...,m) be C*™-functions defined on a simply connected
domain U C R™ satisfying (2.3). Then for each Py € U and Xy € M,,(R), there exists the unique
n X n-matriz valued function X : U — M, (R) satisfying (4.1). Moreover,

o if Xo € GL(n,R), X(P) € GL(n,R) holds on U,
o if Xo € SO(n) and 2; (j =1,...,m) are skew-symmetric matrices, X € SO(n) holds on U.

Proof. The latter half is a direct conclusion of Proposition 2.1. We show the existence of X: Take
a smooth path v: [0,1] — U joining Py and P. Then by Theorem 1.15, there exists a unique
C>-map X: [0,1] — M, (R) satisfying (2.4) with initial condition X (0) = Xj.

We shall show that the value X (1) does not depend on choice of paths joining Py and P. To
show this, choose another smooth path ¥ joining Py and P. Since U is simply connected, there
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exists a homotopy between 7 and 4, that is, there exists a continuous map oq: [0,1] x [0,1] 2
(t,w) — o(t,w) € U satisfying

U()(t» 0) = V(t)a U()(tv 1) = ﬁ(t%

@1) o0(0,w) =Py, op(l,w) = P,

Then, by Whitney’s approximation theorem (Theorem 6.21 in [Leel3]) again, there exists a smooth
map o: [0,1] x [0,1] — U satisfying the same boundary conditions as (2.7):

(2.8) o(t,0) =(t), o(t,1) =4(t),
' o(0,w) = P, o(l,w) =P.
We set T and W as in (2.6). For each fixed w € [0, 1], there exists X,,: [0,1] — M, (R) such that

dXuw
dt

Since T'(t,w) is smooth in ¢ and w, the map

(t) = XoW(t)T(t, w), Xw(0) = Xo.

X:[0,1] x [0,1] 3 (t,w) = Xo(t) € M, (R)
is a smooth map, because of smoothness in parameter « in Theorem 1.15. To show that X (1) =
X(1,0) does not depend on choice of paths, it is sufficient to show that
oX .

2.9 — =XW
(29) ow
holds on [0,1] x [0,1]. In fact, by (2.8), W(1,w) = 0 for all w € [0,1], and then (2.9) implies that
X (1,w) is constant.

We prove (2.9): By definition, it holds that

oxX y
E:XT7 X(O7’U]):XO

for each w € [0,1]. Hence by (2.5),

(2.10)

00X X  PX 9

Ot ow ~ Otdw  dwdt @(XT)
_‘ZT+XZZ_Z§T+X<3¥+TW—WT)
:%T+X%/+%W—XWT
- 2w+ (5w

So, the function Y, (t) := 0X /0w — XW satisfies the ordinary differential equation

dY,
dt
for each w € [0,1]. Thus, by the uniqueness of the solution, Y;,(¢) = O holds on [0, 1] x [0, 1].
Hence we have (2.9).
Thus, X (1) depends only on the end point P of the path. Hence we can set X (P) := X (1) for
each P € U, and obtain a map X: U — M, (R). Finally we show that X is the desired solution.
The initial condition X (Pg) = Xj is obviously satisfied. On the other hand, if we set

(t) =Yu(t)T(t,w), Yu(0)=0

Z(0) == X(uty. . ud 6, u™),
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Z(6) satisfies the equation (2.4) for the path () := (ul,...,u? +4,...,u™) with Z(0) = X(P).
Since (2, = (25,

0X dZ
5 )= G5 |_ = Z0)2,(P) = X(P);(P)

which completes the proof. O

Application: Poincaré’s lemma.

Theorem 2.6 (Poincaré’s lemma). If a differential 1-form
w = Zaj(ul, e ,Um) d'U/j
j=1

defined on a simply connected domain U C R™ is closed, that is, dw = 0 holds, then there exists a
C*®-function f on U such that df = w. Such a function f is unique up to additive constants.

Proof. Since

Jda;  Oa; . .
dw = I ) dut A di,
Z (8ul ou’ )
1<J
the assumption is equivalent to
OJaj  Oay

- Sh=0  (1Zi<jsm).

(2.11)

Consider a system of linear partial differential equations with unknown &, a 1 x 1-matrix valued
function (i.e. a real-valued function), as

0
E.zfaj (Gj=1,...,m), E(up, ..., upr) = 1.

(2.12) 5

Then it satisfies (2.3) because of (2.11). Hence by Theorem 4.5, there exists a smooth function
E(ut, ..., u™) satisfying (2.12). In particular, Proposition 1.8 yields ¢ = det{ never vanishes.
Hence £(ug,...,ul) = 1 > 0 means that £ > 0 holds on U. Letting f := log&, we have the
function f satisfying df = w.

Next, we show the uniqueness: if two functions f and g satisfy df = dg = w, it holds that
d(f — g) = 0. Hence by connectivity of U, f — g must be constant. O

Application: Conjugation of Harmonic functions. In this paragraph, we identify R? with
the complex plane C. It is well-known that a smooth function

(2.13) f:U3u+iv— &(u,v) +in(u,v) € C (i=+V-1)

defined on a domain U C C is holomorphic if and only if it satisfies the following relation, called
the Cauchy-Riemann equations:

o _on 05 _ Oy
(2.14) ou  ov’ v Ou’

Definition 2.7. A function f: U — R defined on a domain U C R? is said to be harmonic if it
satisfies

Af = fuu + f’uv =0.
The operator A is called the Laplacian.
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Proposition 2.8. If function f in (2.13) is holomorphic, {(u,v) and n(u,v) are harmonic func-
tions.

Proof. By (2.14), we have
guu - (gu)u - (nv)u = Nou = Nuv = (nu)v - (_gv)v = _gvv'
Hence A¢ = 0. Similarly,
Nuu = (_fv)u = _gvu = _guv = _(gu)v = _(nv)v = —Tw-
Thus An = 0. O

Theorem 2.9. Let U C C = R? be a simply connected domain and &£(u,v) a C*°-function harmonic
on US. Then there exists a C*° harmonic functionn on U such that &(u,v)+in(u,v) is holomorphic
onU.

Proof. Let o := —&, du + £, dv. Then by the assumption,
da = (&yp + Euu) duNdv =0

holds, that is, « is a closed 1-form. Hence by simple connectivity of U and the Poincaré’s lemma
(Theorem 4.8), there exists a function n such that dn = n, du + 1, dv = «. Such a function n
satisfies (2.14) for given £. Hence £ + 17 is holomorphic in u + iwv. O

Example 2.10. A function &(u,v) = e* cosv is harmonic. Set
a:=—&du+ &, dv=e"sinvdu+ e cosv dv.
Then n(u,v) = e*sinv satisfies dn = a. Hence
£+in=e"(cosv +isinv) = e
is holomorphic in u +iv.

Definition 2.11. The harmonic function 7 in Theorem 2.9 is called the conjugate harmonic func-
tion of &.

Ezxercises

2-1 Let £(u,v) :=logvu? + v2 be a function defined on U :=R?\ {(0,0)}.
(1) Show that £ is harmonic on U.

(2) Find the conjugate harmonic function 7 of £ on
V =R*\ {(4,0)|u <0} CU.
(3) Show that there exists no conjugate harmonic function of £ defined on U.

2-2 Consider a linear system of partial differential equations for 3 x 3-matrix valued unknown X
on a domain U C R? as

0 —a —hi 0 —B —hy
‘%X = X0, aan = X4, R:=|a 0 -n|, A:=[8 0 =h3|],
v Y hi h} 0 hy h3 0

where (u,v) are the canonical coordinate system of R2, and «, 3 and h; (i,7 = 1,2) are
smooth functions defined on U. Write down the integrability conditions in terms of «, 8 and
J

6The theorem holds under the assumption of C2-differentiablity.
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3 Differential Forms

Let M be an n-dimensional manifold and denote by F (M) and X(M) the set of smooth function
and the set of smooth vector fields on M, respectively.

Lie brackets A vector field X € X(M) can be considered as a differential operator acting on
F(M) as (X f)(p) = X, f. By definition it satisfies the Leibniz rule

(3.1) X(fg)=f(Xg)+9(Xf) (X €X(M),fgeF(M)).

For two vector fields X, Y € X(M), set

(3.2) [(X,Y]: F(M)> f— X(Yf) = Y(Xf) € F(M).

Then [X, Y] also satisfies the Leibnitz rule (3.1), and gives a vector field on M. The map
[, ]: (M) x X(M) 3 (X,Y) = [X,Y] € (M)

is called the Lie bracket on X(M). One can easily show that the product [, ] is bilinear, skew
symmetric and satisfies the Jacobi identity

(3-3) (X, [Y, Z]| + [V, [Z, X]] + [Z,[X, Y]] = 0,

that is, (X(M), [, ]) is a Lie algebra (of infinite dimension). By the Leibniz rule, it holds that
(B4) X, Y] =fIX,Y] - (Y N)X, [X,fY]=[fIX.Y]+(X[)Y (XY eX(M),feFM).
Tensors. For each p € M, the dual space Ty M of T, M is the liner space consisting of all linear
maps from T, M to R.

Lemma 3.1. Let (x!,...,2") be a local coordinate system of M around p, and set

(f;;)p tF(M)> fr %(p% (dz?),: T,M - R  with  (d2?), ((;;)p) g

for j,k =1,...,n. Then {(0/0x7),}j=1, .. and {(dxj)p}jzl ,,,,, n are a basis of T,M and Ty M,

respectively, where 5% denotes Kronecker’s delta symbol.

We let
oM@ Ty M (resp. T;M@T;M@T;M)

the set of bilinear (resp. trilinear) maps of T, M x T,M (resp. T, M x T, M x T,M) to R. A section
of the vector bundle

T*M@TM:= | TyM@T; M (resp. "M @T*M@T*M := | ] TyM @ Ty M @ Ty M
pEM peEM

is called a covariant 2 (resp. 3)-tensor.
A section w € I'(T* M) of the cotangent bundle T*M is called a covariant 1-tensor or a 1-form.
A one form w induces a linear map

(3.5) w:X(M) > X — w(X) € F(M), where  w(X)(p) = wp(Xp)
By definition, it holds that

(3.6) w(fX) = fu(X)  (f € F(M),X € X(M)).
27. June, 2023. Revised: 04. July, 2023)
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Lemma 3.2. A linear map w: X(M) — F(M) is a 1-form if and only if (3.6) holds.

Proof. The “only if” part is trivial by definition. Assume a linear map w: X(M) — F(M) satisfies
(3.6). In fact, under a local coordinate system (x!,...,2") around p € M,

n ) 8 n ) 8 n ) 8
_ i % - J v - i_Y
j=1 j=1 p Jj=1
holds. In other words, w(X)(p) depend only on X,,. Hence w induces a map wy: T, M — R. O

Similarly, a covariant 2 (resp. 3) tensor o € I'(T*M @ T*M) (resp. p € I'(T*M @ T*M ®
T*M))induces a bilinear (resp. trilinear) map a: X(M) x X(M) — F(M). (resp. B: X(M) x
X(M) x X(M) — F(M). By the same reason as Lemma 3.2, we have

Lemma 3.3. A bilinear map a: X(M)xX(M) — F(M) (resp. 5: X(M)xX(M)xX(M) — F(M))
is a a covariant 2 (resp. 3)-tensor if and only if

a(fX,Y) = a(X, fY) = fa(X,Y)
(resp. B(FX,Y,Z)=B(X,[Y,Z) = B(X,Y, fZ) = [B(X,Y, Z))

holds for all X, Y, Z € X(M) and f € F(M).
A covariant 2 (resp. 3)-tensor « (resp. /) said to be skew-symmetric if
a(X,Y) = —a(V,X), (B(X,Y,2) = —B(Y,X,Z) = -B(X, Z,Y) = ~B(Z,Y, X))
holds for all X, Y, Z € X(M). We denote

F (M) (k

I'(T*M k=
an  aan= Y | | (
{weI'(T*"M @ T*M) ; w is skew-symmetric } (k
{w € F(T*M QT*M ® T*M) T wis skew—symmetric} (k

An element of A¥(M) is called an k-form.

The Exterior products. The exterior product a A 3 € A*(M) of two 1-forms a, 8 € ALY (M) is
defined as

(3.8) (A B)X,Y) = a(X)B(Y) — a(Y)B(X).
On the other hand, the exterior product of o and w is defined as a 3-form on M by
(3.9) (aANW)(X,Y,Z)=(wAa)(X,Y,Z) = a(X,Y)w(Z) + a(Y, Z)w(X) + a(Z, X)w(Y).

Then by a direct computation together with (3.8), it holds that
(3.10) (u/\w)/\/\:,u/\(w/\/\)<::,u/\w/\/\>

for 1-forms p, w and A.
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The Exterior derivative. Under a local coordinate system (z!,...,2"), a one form « and a

two form w are expressed as

n

. ; .

a= E o da? w = g wij dx' A dz?,
Jj=1

15i<j<n

where «; (j = 1,...,n) and w;; (1 £ i < j < n) are smooth functions in (z',...,2"). By
Lemma 3.3 and the property (3.4) of the Lie brackets, we have

Lemma 3.4. For a function f € F(M) = N°(M), a 1-form o € AY(M) and a 2-form 3 € A2(M))
df : X(M)> X — df(X)=X[f e F(M),
doa: X(M)x X(M) > (X,Y)— Xa(Y) —Ya(X) — o([X,Y]) € F(M)
df: X(M) x X(M) x X(M) > (X,Y, Z) —
XB(K Z) + YB(ZvX) + ZB(X7 Y) - 6([X7 YLZ) - ﬁ([K Z]aZ) - 6([Z7 X],Y)
are a 1-form, a 2-form and a 3-form respectively.

Definition 3.5. For a function f, a 1-form « and a 2-form 3, df, da and df are called the exterior
derivatives of f, a and (3, respectively.

Then, for one forms p and w, we have
(3.11) ddw = 0, dlpAw) =duAw—pA dw,
by the definition and the Jacobi identity (3.3).
The Riemannian connection. In the rest of this section, we let (M, g) be an n-dimensional

(pseudo) Riemannian manifold, and denote by ( , ) the inner product induced by g.

Lemma 3.6. There exists the unique bilinear map V: X(M) x X(M) 3 (X,Y) = VxY € X(M)
satisfying

(3.12) VxY -VyX=[X,Y], X(,2)=(VxY,2)+(X,VxZ) (X,Y,ZeX(M))

Definition 3.7. The map V in Lemma 3.6 is called the Riemannian connection or the Levi-Civita
connection of (M, g).

Lemma 3.8. The Riemannian connection V satisfies
(3.13) VixY = fUxY,  Vx(f¥)=(X)Y + [VxY.
Remark 3.9. A bilinear map V: X(M) x X(M) — X (M) satisfying (3.13) is called a linear con-

nection or an affine connection.

Remark 3.10. By Lemmas 3.8 and 3.2, X — VxY determines a one form.

Orthonormal frames. For a sake of simplicity, we assume that g is positive definite, in other
words, (M, g) is a Riemannian manifold.

Definition 3.11. Let U C M be a domain of M. An n-tuple of vector fields {e1,...,e,} on U
is called an orthonormal frame on U if (e;, e;) = 6;;. It is said to be positive if M is oriented and
{e;} is compatible to the orientation on M.

Remark 3.12. For each p € M, there exists a neighborhood U of p which admits an orthonormal
frame on U.
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Lemma 3.13. Let {e;} and {v;} be two orthonormal frames on U C M. Then there exists a
smooth map

(3.14) ©:U — O(n) such that le1,...,e] =[v1,...,0,]0.
Moreover, if {e;} and {v;} determines the common orientation, © is valued on SO(n).

The map @ in Lemma 3.13 is called a gauge transformation.
For an orthonormal frame {e;} on U, we denote by {w’};—1, _, the dual frame of {e;}, that

is, w/ € A1(U) such that
g U G=h
J e = (SJ =
wier) =0 {O (otherwise).
In other words, w?(X) = (e;, X).

Lemma 3.14. Two orthonormal frames {e;} and {v;} are related as (3.14). Then their duals
{wi} and {N} satisfy

Al wt
| =e
A" w"
Proof.
AL Al wl
Sllencen) = | (01,...,0,)0=0=0| : |(e1,...,en). O
ATL )\n wTL

Connection forms.

Definition 3.15. The connection form with respect to an orthonormal frame {e;} is a n x n-matrix
valued one form {2 on U defined by

wi ws . w
wowi oL w2 .
N=1 o o, wj = (Vej,exr) € AL (U).
Wl wy ... wp
By definition, we have Ve; = Y, w;?ek, that is, V]e1,...,en] = [e1,...,ex]82.
Lemma 3.16. w;? = —wi.
Proof. wk = (Ve;,er) =d(e;,exr) — (e, Ver) = —wl.
O
Lemma 3.17. dw' =Y w' Awi.
Proof.
dw' (e, er) = ejw'(ex) — exw'(e;) — w'([ej, ex]) = —w' (e, ex])
= foﬂ'(Ve,ek —Ve,€;) = — <Ve,ek — Vekej,ei> = fw,i(ej) +w§(ek)

Z —wji(e;)w'(er) + wi(ex)w Zw Awi(ej, er). O
=1
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Ezxercises

3-1 Let {e;} and {v;} be two orthonormal frames on a domain U of a Riemannian n-manifold
M, which are related as (3.14). Show that the connection forms {2 of {e;} and A of {v;}
satisfy 2 = 071460 + 6 1dO.

3-2 Let R? be the 3-dimensional Lorentz-Minkowski space and let H?(—1) the hyperbolic 2-space
(i.e. the hyperbolic plane) of constant curvature —1.

(1) Verify that
f(u,v) := (coshu, cos v sinh u, sin v sinh )

gives a local coordinate system on U := H?(—1) \ {(1,0,0)}, and
e := (sinh u, cos v cosh u, sin v cosh u), es := (0, —sinv, cosv)

forms a orthonormal frame on U.

(2) Compute the connection form(s) with respect to the orthonormal frame {e;, es}.
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4 Curvatre forms

4.1 Addendum to the previous section

Proposition 4.1 (The local expression of the Lie bracket). Let (U;z?',...,2") be a coordinate
neighborhood of an n-manifold M. Then the Lie bracket of two vector fields

X: ‘77_ Y: ]7'
;5 Oxd’ jz::ln OxJ

is expressed as

"o 99\ 0
— KZ0 kS ) 2
X Y] = Z <§ ok ! Back) dad’

j=1
Proof. For a smooth function f on U, it holds that
o o , of  9f 0 0

Oxt 0z’ Oxidxi  Bxidxi Ozl Ox I
Hence [0/0x%,0/0x7] = 0. Then the conclusion follows from bilinearlity of [X, Y] and the formula
for a smooth function f and vector fields X and Y. O
Proposition 4.2 (A local expression of the connection forms). Let U be a domain of a Riemannian

n-manifold (M, g) and [ey, . .., e,] an orthonormal frame on U. Then the connection form w! with
respect to the frame [e;] is obtained as
1

w!(e) = 3 <— (lei es], ex) + ([ej, ex], €:) + ([ex, €], 6j>>’

where { , ) denotes the inner product induced from g.
Proof. By the definition of the Levi-Civita connection V,
Wl (ex) = (Ve, ei,e;) = ey, (e;,e;) — (e, Ve, e;) = — (e;,Ve,er + len, €5])
= —e; (e;,er) + (Ve, e, er) — (e, [ej, ex])
= (Ve,ej,ex) + ([ei, 5], ex) — (ei, e, ex])
= ei(ej,ex) — (e, Ve,er) + ([ei €j], ex) — (e, ), ex])

= —(ej, Ve, i) — (e}, e, er]) + ([ei, 5], ex) — (e, [e;, ex])

= —w](ex) + ([ese)] ex) — ([ej, ex], €:) + ([ ei] &) - O
4.2 Preliminaries
Integrability condition, a review. Let U be a domain of R™ with coordinate system (z!,...,2™),
and consider a system of differential equations
OF
with initial condition
(4.2) F(Py) = Fy € M, (R), Py = (xp,...,20") €U,

where F is an unknown map into the space of n x n-real matrices M, (R), and the coefficient
matrices 2 (I =1,...,m) are M,,(R)-valued C°°-functions.

Lemma 4.3. If the initial condition Fy in (4.2) is non-singular, i.e., Fy € GL(n,R)", F satisfying

04. July, 2023. Revised: 11. July, 2023
“GL(n,R) denotes the set of n X n-regular matrices.
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(4.1) is a GL(n,R)-valued function, that is, F is invertible for each point on U.

Proof. For each P € U, take a smooth path v(t) := (z(t),...,2™(t)) (0 £t £ 1) with v(0) = Py
and (1) = P. Then the matrix-valued function F' := F o+ of one variable satisfies the ordinary
differential equation

PN A - da!
— =FQ, Q::Zmoyﬁ.
=1
Hence ¢ := det F' satisfies

. ~dF A L
9 _ 4 g f =t (Fd) = tr(FFO) = det Ftr 2 = gw

dt  dt dt

where F' denotes the cofactor matrix of F and w := tr 2. So

det F'(t) = o(t) = po exp/0 w(r)dr (o := det Fp),

proving the lemma. O

As seen in the previous lectures the following integrability condition holds:
Lemma 4.4. If a C*®-map F: U — GL(n,R) satisfies (4.1), then it hold on U that

2, 90
(4.3) %—%+Qk@—mgkzo (1<k<l<m).

The integrability condition (4.3) guarantees existence of the solution of (4.1) as follows

Theorem 4.5. Let 2;: U — M,,(R) (I =1,...,n) be C™-functions defined on a simply connected
domain U C R™ satisfying (4.3) Then for each Py € U and Fy € M,,(R), there exists the unique
m x m-matriz valued function F': U — M, (R) satisfying (4.1) and (4.2). Moreover,

o if Fy € GL(m,R), F(P) € GL(m,R) holds on U,

o if Fy € SO(m) and §2;’s are skew-symmetric matrices, F(P) € SO(m) holds on U.

Coordinate-free expressions Let 2;: U — M,(R) (I =1,...,m) be C*-functions defined on
a domain U C R™, and define n x n-matrix {2 of 1-forms as

11 1 1 g0l 1ol 1 7.1
wi wi ... wy Ywipdrt Ywiydrt . Ywl, dr
2,2 2 3 3" 1 3
wi wi ... wi m . Ywidrt Ywiydrt ... Y wip,dx
4.4) 2= . . . = 2, dz' = ’
. l . . . )
’ : =1 . : . :
wl' wy ... wp Swidet Swi,det L0 Y wp, dat

where 2 = (w] ;)- Then 2 is considered as a M, (R)-valued 1-form, and (4.1) is restated as
(4.5) dF = F9.

Lemma 4.6. Under the situation above, the integrability condition (4.3) is equivalent to

n
(4.6) A+ QA2 =0,  where QAQ:(ZW;;M;?>
k=1

i,j=1,...,n
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Proof. Assume F be a solution of (4.5) with F' € GL(n,R). Then
O=ddF =d(F2)=dF N2+ Fd2=F(2A2+d2). O

Thus, by using differential forms, we can state the system of partial differential equations (4.1)
and its integrability condition (4.3) in coordinate-free form. The proof of Theorem 4.5 works not
only simply connected domain U C R™ but also simply connected m-manifold, and thus, we have

Theorem 4.7. Let 2 be an M, (R)-valued 1-form on a simply connected m-manifold M satisfying
(4.6). Then for each Py € M and Fy € M, (R), there exists the unique n X n-matriz valued function
F: M — M, (R) satisfying (4.5) with F(P) = Fy. Moreover,

o if Fy € GL(n,R), F(P) € GL(n,R) holds on M,
o if Fy € SO(n) and 12 is skew-symmetric, F(P) € SO(n) holds on M.

When n = 1, that is, {2 is a usual 1-form, 2 A {2 always vanishes, and the integrability condition

(4.6) is simply df2 = 0. Then we have the following Poncaré’s lemma®.

Theorem 4.8 (Poincaré’s lemma). If a differential 1-form w defined on a simply connected and
connected m-manifold M is closed, that is, dw = 0 holds, then there exists a C'°°-function f on M
such that df = w. Such a function f is unique up to additive constants.

Proof. Since w is closed, there exists a function F' on M satisfying dF' = Fw with initial condition
F(Py) = 1. By Lemma 4.3, F does not vanish on M, that is, F' > 0. Hence f := log F is a smooth
function on M satisfying df = dF/F = Fw/F = w. Take another function g on M satisfying
dg = w, d(f — g) = 0 holds. Then connectedness of M infers that f — g is constant. O

4.3 Curvature form

Let U be a domain of n-dimensional Riemannian manifold (M, g). We let {2 be the connection
form with respect to an orthonormal frame [ey, ..., e,] on U, as defined in Definition 3.15.

Definition 4.9. We define a skew-symmetric matrix-valued 2-form by K := df2 4+ 2 A £2 and call

the curvature form with respect to the frame [eq, ..., e,].
Take an orthonormal frame [vy,...,v,] on U and take a gauge transformation ©: U — O(n):
le1,...,e,] =[v1,...,v,]O.

Denoting the connection form and the curvature form with respect to [v;] by 2 and K. Then
Proposition 4.10. (1) 2 = 01020 +671d6, (2) K = O 1K0.
Proof. Since
le1,...,ex]2=V]ei,...,e,) =V([v1,...,v,]0) = V[v1,...,v,]0 + [v1,...,0,]dO
= [v1,...,0,]020 + [vy,...,0,]dO = [eq,...,e,]0 (26 + dO),
the first assertion is obtained. Next, noticing d(£20) = (d2)6 — 2 A dO, 201 NON = 2 A 12,
and so on, we have
A+ QN2 =dO7'26 +671dO) + (07120 + O~ 'dO) A (67126 + O 1dO)
=-071d067'020 +671dN6 -~ O 1R N dO - 671dOO ! A dO
+07'00NOTIN0+071dONOTINO + 07RO NOTIdO + 67O A OT1dO
=042 + 2 N 2)6,
proving (2). O

8Theorem 2.6 in Advanced Topics in Geometry E (MTH.B501).
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The goal of this section is to prove the following

Theorem 4.11. Let U be a domain of a Riemannian n-manifold (M, g) and K the curvature form
with respect to an orthonormal frame [ey,...,e,] on U. For a point P € U, there exists a local
coordinate system (z1,... 2™) around P such that [0/0z*,...,8/0z"] is an orthonormal frame if

and only if K vanishes on a neighborhood of P.

Remark 4.12. By (2) of Proposition 4.10, the condition K = 0 does not depend on choice of
orthonormal frames. A Riemannian manifold (M, g) said to be flat if K = 0 holds on M.

Proof of Theorem 4.11. First, we shall show the “only if” part: Let (x!,...,2") be a coordinate
system such that [e; := 8/0x7] is an orthonormal frame. Since

s exl = | 57 par | =

Proposition 4.2 yields that all components of the connection forms wz vanish. Hene we have K = 0.

Conversely, assume K = 0 for an orthonormal frame [e;]. Since the connection form 2 satisfies
df2 + Q2 A 2 = O, there exists a matrix-valued function ©: V' — SO(n) satisfying d©® = 012,
O(P) = id on a sufficiently small neighborhood V' of P, because of Theorem 4.5. Take a new

orthonormal frame [v1,...,v,] := [e1,. .., e,]O~ . Then by (1) of Proposition 4.10, the connection
form 2 = (@) with respect to [v;] vanishes identically. So by Lemma 3.17, dw’ = 0 holds for
t=1,...,n. Hence by the Poincaré Lemma (Theorem 4.8), there exists a smooth functions on a

neighborhood V of P. Such (z?,...,z") is a desired coordinate system if V is sufficiently small. [

Ezxercises
4-1 Consider a Riemannian metric
g =dr* + {p(r)}? do? on U:={(r0);0<r<ry—-n<6<m},
where ry € (0, +00] and ¢ is a positive smooth function defined on (0, ry) with

. - . 1 _
Jimoo(r) =0, lim ¢'(r) =1.

Find a function ¢ such that (U, g) is flat. (Hint: [0/0r, (1/¢)0/00)] is an orthonormal frame.)

4-2 Compute the curvature form of H?(—1) with respect to an orthonormal frame [ey, e5] as in
Exercise 3-2.
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5 The Sectional Curvature

5.1 Preliminaries

Exterior products of tangent vectors. Let V be an n-dimensional vector space (1 £ n < o)
and denote by V* its dual. Then (V*)* can be naturally identified with V itself. In fact,

I:Vovr— Iy e (V)" :={A: V" = R;linear}, Iy(a) := a(v)

is a linear map with trivial kernel. Then I is an isomorphism because dim(V*)* = dim V.
We denote by A2V := AZ(V*)* the set of skew-symmetric bilinear forms on V*. For vectors v,
w € V, the exterior product of them is an element of A2V defined as

(v Aw)(a, B) == a(v)B(w) — a(w)B(v) (o, BEVT).
For a basis [e1,...,e,] on V,
(5.1) {e;Nej;1Si<jSn}

is a basis of A?V. In particular dim A%V = in(n —1). When V is a vector space endowed with an

inner product {, ) and [ey,...,e,] is an orthonormal basis, there exists the unique inner product,
which is also denoted by (, ), of A2V such that (5.1) is an orthonormal basis. This definition
of the inner product does not depend on choice of orthonormal bases of V. In fact, take another
orthonormal basis [v1,...,v,] related with [e;] by

le1,...,en] = [v1,...,v,]0 O =(#))cO(n).
Since OT =071, [vy,...,v,] = [e1,...,€,]OT holds. Hence
vy Avy = (Ze;e%) ND blei | =D 0:00(eine;) = (6;0% - 036!)(ei Nej)
i j i i<j
and so

(Vs ANV, Uy AUy) = Z (0705 — 030;) (0107 — 01'07) (e: A ej,ex N er)

1<j,k<l
= Y (6365 —6;60) (667 — 6167)5udj = Y (6;6] — 0300) (6165 — 60367
i<j,k<l 1<j
= (6:050707 — 03010107 — 056101107 + 050101107
1<j
= 05010107 + > 0500107 — > 03010107 + > 05010107
1< 1<j (> (>
_ st pu v st pupv
= 0500107 — > 03010107
7] 7]
= (0010107 — 03010107) — > (0501007 — 05010107
— -

— 55u5tv _ 5tu55v

because Y, 050! = §°'. So, if s < t and u < v, the second term of the right-hand side vanishes.

That is, {vs Av;; s < t} is an orthonormal basis as well as {e; Ae;; i < j} is.

12. July, 2023. xRevised: 18. July, 2023
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Symmetric bilinear forms. Let V be a real vector space. A bilinear map ¢q: V x V — R is
said to be symmetric if g(v,w) = g(w,v) for all v, w € V.

Lemma 5.1. Two symmetric bilinear forms q and q' coincide with each other if and only if
q(v,v) = ¢ (v,v) hold for allv e V.

Proof. By symmetricity, ¢(v,w) = %(q(v +w,v+w) — q(v,v) — g(w,w)) holds. O

5.2 Sectional Curvature

Let U be a domain on a Riemannian n-manifold (M, g), and [ey, ..., e,] an orthonormal frame on
U. Denote by (w/)j=1,..n, 2 = (w})ij=1,..n and K = (k)i=1,n = d2+ 2 A £2 the dual frame,
the connection form and the curvature form with respect to the frame [e;]. Then Lemma 3.17 and
Definition 4.9, we have

(5.2) dw? = Zwl Awl, K] = dwl + Zwlj Awh.
1 ]

Since (2 is a one form valued in the skew-symmetric matrices, so is K:

Proposition 5.2 (The first Bianchi identity). «’(ex,e;) + £4(er, e;) + j(ej, ex) = 0.
Proof. By (5.2) and (3.11),

Oddwid<2ws/\wi> :Z(dws/\wi—ws/\wi)

S

:Z (Z(wm/\wfn)/\wé—ws/\ (ni—Zw%AdwT))

m

m
:Zwm/\wﬁq/\wi—FZws/\w%@/\wT—Zws/\mi
s,m s5,m S
:ZwmA(wfn/\wieri/\wfn)waS/\ni:waS/\/si.
s,m s s

Hence

0=> (W Arl)(ej en er) = Y (w(e))ri(er, er) +w'(er)ri(er e;) +w'(er)rl(e;, ex))

S S

= (6K (e, er) + OiKL (e, e) + 6 kL(e;, ex))

S

= K}(ex, e1) + ki (er, €) + Kj(ej, ex),
proving the assertion. O
Corollary 5.3. /ﬁé(ek,el) = ki (e;, €j).

Proof. By Proposition 5.2,

Kh(er, er) + ki (er, €5) + Ki(ej, ex)

0

/si(ei, e) + (e, er) + n{(ek, e;)=0
k

i 0

(er,€:) + K] (e, €5)

Summing up these and noticing k! = —k7, we have the conclusion. O
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A quadratic form induced from the curvature form. We fix a point p € U. Under the
notation above, we can define a bilinear map

(54)  K(Emn) = > rlene)fn?, &= Mexne, n=> n'eine;

i<jk<l k<l i<j

on A*T, M, where e, k7 ..are considered tangent vectors, 2-forms at the fixed point p. In fact, one
can show that the definition (5.4) is independent of choice of orthonormal frames. As a immediate
conclusion of Corollary 5.3, we have

Lemma 5.4. K is symmetric.
Hence, taking Lemma 5.1 into an account, we define the sectional curvature as follows:

Definition 5.5. Let II, C T, M be a 2-dimensional linear subspace in T, M. The sectional curva-
ture of (M, g) with respect to the plane II, is a number

K(II,) = K(v ANw,v Aw),
where {v, w} is an orthonormal basis of II,

Remark 5.6. For (not necessarily orthonormal) basis {x,y} of II,, the sectional curvature is ex-
pressed as
K(zNy,zAy)

K(IT,) = (x ANy, z A y) ’

where (, ) of the right-hand side is the inner product of A?T,M induced from the Riemannian
metric.

Remark 5.7. The sectional curvature is a scalar corresponding to a 2-plane in the tangent space
T,M. Hence it can be considered as a function of 2-Grassmannian bundle induced from the tangent
bundle T M.

5.3 Curvature Tensor

Let (M, g) be a Riemannian manifold and V the Levi-Civita connection. Define a trilinear map
(5.5)
R: X(M) x X(M) x X(M) > (X,Y,Z) = R(X,Y)Z =VxVyZ - VyVxZ —Vixy]Z € X(M).

By the properties Lemma 3.6 of the connection and the property (3.4) of the Lie bracket, the
following Lemma is obvious.

Lemma 5.8. For any function f € F(M) and vector fields X, Y, Z € X(M),
R(fX,Y)7 = R(X, [Y)Z = R(X,Y)(fZ) = [R(X,Y)Z
holds.

Corollary 5.9. Assume the vector fields X,Y, Z and X, Y, Ze X(M) satisfy X, = )?p, Y, = lN/p
and Z, = Z, for a point p € M. Then

(R(X,Y)Z), = (R(X,Y)Z),.
In other words, R in (5.5) induces a trilinear map

Ry,: T,M x T,M x T,M — T, M.



MTH.B506; Sect. 5 26

Definition 5.10. A trilinear map R(X,Y)Z is called the curvature tensor of (M, g). In addition,
a quadrilinear map
R(X.Y,2,T) = (R(X,Y)Z,T) : X(M)" — F(M)

is also called the curvature tensor. In fact, R € I'(T*M @ T*M @ T*M @ T*M), that is R is
(0, 4)-tensor field, because R induces a quadrilinear map

R: (T,M)* =R
for each p € M.

Lemma 5.11. Let [e1,...,e,] be an orthonormal frame on a domain U C M, and K = (k) the
curvature form with respect to the frame. Then it holds that

KI(X.Y) = R(X,Y,e;,e;)
for each (i,7).
So by (5.3), Proposition 5.2, Corollary 5.3 yield
Proposition 5.12. e RX,Y,Z,T)=-R(Y,X,Z,T)=-R(X,Y,T,2),
e« RIX,Y,ZT)+R(Y,Z, X, T)+ R(Z,X,Y, T)=0,
e« RX,Y,Z,T)=R(ZT,X,Y).
Moreover, the sectional curvature K (II,) in Definition 5.5 is computed by

P A

(5.6) - .
<SC,$> <y7y> - (sc,y)

Ezxercises
5-1 Consider a Riemannian metric
g =dr? + {p(r)}? db? on U:={(r0);0<r<ry—m<l<mr},

where 79 € (0,400] and ¢ is a positive smooth function defined on (0,r¢) with

: _ _op(r)
r1—1>r£0 CP(T) o 0, r1—1>I-r|-10 r =1

Classify the function ¢ so that g is of constant sectional curvature.

5-2 Let M C R™*! be an embedded submanifold endowed with the Riemannian metric induced
from the canonical Euclidean metric of R**!. Then the position vector z(p) of p € M induces
a smooth map
x: M >pr— x(p) € R"

which is an (n + 1)-tuple of C'*°-functions. Let [eq,...,ey] be an orthonormal frame defined
on a domain U C M. Since T,M C R™"!, we can consider that e; is a smooth map from
U — R"*1. Take a dual basis (w?) to [e;]. Prove that

n
dx = E e;jw’
=1

holds on U. Here, we regard that dx is an (n + 1)-tuple of differential forms and e; is an
R"*1_valued function for each j.
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6 Space forms

6.1 Constant sectional curvature
Let (M, g) be a Riemannian n-manifold, and let
Gra(TM) := U, Gra(T, M),
Gro(Tp,M) = 2-Grassmannian of T, M = {II,, C T,M ; 2-dimensional subspace}.
The sectional curvature defined in Definition 5.5 is a map K: Gro(TM) — R such that
K(II,) == K(v ANw,v A w),

where {v, w} is the orthonormal basis of II,,.

Fix a point p, and take an orthornormal frame [ey,...,e,] defined on a neighborhood U of p.
Denote by (w’), 2 = (w!) and K = (k) the dual frame, the connection form and the curvature
form with respect to the frame [e;], respectively.

Theorem 6.1. Assume there exists a real number k such that K(IL,) = k for all 2-dimensional
subspace 11, € T,M for a fized p. Then the curvature form is expressed as

H; =kw' Aw’.
Conversely, the curvature form is written as above, the sectional curvature at p is constant k.
Proof. By the assumption, k = K (Span{e;, e;}) = K(e; Aej, e; A ej) = k' (e;, ;). Let
v := cos fe; + sinfe;, w = cos pe; + sin pe,,
where {3, 5} # {l,m}, and set Iy , := Span{v,w} C T, M. Then by biliniearity of the A-product
on T, M, it holds that
v A w = cosfcospe; A e + cosfsinpe; A e, + sinf cospe; A e +sinldsinpe; A ey,.
Since {v, w} is an orthonormal basis of Il ., biliniearity and symmetricity of K implies
(6.1) k=K(Ilp,) = K(vAw,vAw)
=cos? O cos® oK (e; A ej,e; Ae) +cos? Osin oK (e; A e, e; Aen)
+ sin? 6 cos® eK(ej Nej,ej Nep) + sin? 6 sin? eK(ej Nem,e;Ney)
+ 2cos? 6 cos psin oK(e; Neje; Ney)+2 cos 0 sin 6 cos® oK(e; Nej,ej Nejp)
+2cosfsinfcos psinp(K(e; ANej,ej ANen)+ K(e; Aem,e; Aep))
+ 2 cos 0 sin 0 sin® oK (e Nem,e; Ney)+ 2sin? 6 cos @ sin oK(e; Nej,ej Nen)
=k + 2(cos2 6 cos psin K (e; A ej, e; A ey,) + cosfsin b cos® oK (e; A ey, e; Nep)
+ cosfsinfcospsin p(K(e; Nej,e; ANey) + K(e; Aen,ej Aep))
+ cosfsinfsin® 9K (e; A ey, ejNey)+ sin? 6 cos ¢ sin vK(ej Nej,ej A em)).
So, by letting 8 = 0, we have
(6.2) K(e; Neje; ANey) =0.

Similarly, letting 6 = 7/2, ¢ = 0 and ¢ = 7/2, we have K(e; Aej, e; Ney) = K(e;Nej,ejAep) =
K(e; A ey, e; Aeyp)=0. Hence the equality (6.1) implies

K(eiNej,ejNey)+ K(e; Ney,e; Aey) =0.

25. July, 2022.
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By definition (5.4), this is equivalent to
Ky (ei,er) + né-(ei, em) = —(kl (e, e) + Ii{(ei, em))-
Then by Proposition 5.2, we have
O == K‘Z‘n(e’ia el) + K"lj(e% em) == Kj‘zn(eh el) - Hz(evm el) - K“Zn(ela ei) = 2“{;@(6% el) - Kz(ema el)'

Exchanging the roles of i and m, it holds that 2«7 (e,,, e;) — r, (e, e;) = 0. So we have

(6.3) wl(eme) =0 (if {i,j} # {m,1}).
On the other hand, (6.2) means that ng (e;,e) = Iig (ej,e;) = 0 when | # ¢,j. Summing up, we
have
j k i, 3) = (k1
W (en, €r) = (4, 7) .( 1)
0 otherwise,

proving the theorem. O
We now consider the case that the assumption of Theorem 6.1 holds for each p € M.

Theorem 6.2. Assume that for each p, there exists a real number k(p) such that K(II,) = k(p)
for any I, € Gra(T,M). Then the function k: M > p — k(p) € R is constant provided that M is
connected.

Proof. By taking the exterior derivative of K,g = dwf + Y. wl Aws, it holds that

dk] = d(dw?) +ng A dw; dew‘Z Awj

= (ni—wa/\wE)/\wf—Zwﬁ/\(nf—wa/\wf),
s t

and hence we have the identity
(6.4) k! = Z (k] Awf —w! AKD),
which is known as the second Bianchi identity. By our assumption, Theorem 6.1 implies that
k] = kw' Aw’. Then by Lemma 3.17,
dk! = d(kw') Aw? — kw' Adw? = dk A w® Aw? + kdw® AW — kw' A do?
=dk Aw' AW —|—ka3 Awl AW —kai/\ws/\wg =dk Aw' AW —|—dmf
s s

holds for each i and j. Thus, dk A w? Aw? = 0 for all ¢ and j, which implies dk = 0. This equality
is independent of choice of orthonormal frames. Since M is connected, k is constant. O

6.2 Space forms

Let (M, g) be a Riemannian n-manifold. A path ~: [0,400) — M is said to be a divergence path
if for any compact subset K € M, there exists to € (0, +00) such that v([tg, +o0)) € M \ K. If
any divergent path has infinite length, (M, g) is said to be complete.” In particular, a compact
Riemannian manifold without boundary is automatically complete.

9Usually, completeness is defined in terms of geodesics: A Riemannian manifold (M, g) is complete if any geodesics
are defined on entire R. The definition here is one of the equivalent conditions of completeness, expressed in the
Hopf-Rinow theorem. cf. MTH.B505.
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Definition 6.3. An n-dimensional space form is a complete Riemannian n-manifold of constant
sectional curvature.

Example 6.4. The Euclidean n-space is a space form of constant sectional curvature 0. In fact,
let (z',...,2™) be the canonical Cartesian coordinate system and set e; = 9/0x7. Then [e;] is
an orthornormal frame defined on the entire R", and Propositions 4.1 and 4.2 implies that the
connection form wj- = 0. Hence the curvature forms vanish, and then the sectional curvature is
identically zero.

So it is sufficient to show completeness. Let v: [0, +00) — R™ be a divergent path. Then for
each r > 0, there exists ¢y > 0 such that |y(t)| > r holds on [tg, +00), equivalently, |y(¢)| — +oo
as t — +o00. So the length L of the curve 7 is

/Ot (1) dr
0

Here, we used the triangle inequality of integrals for vector-valued functions'©.

= lim |y(t) =~y(0)| 2 1im |y(t)] = [v(0)] = +o0.

t—+oo ~ t—+4oco

¢
o : S 1
L= lim /0 |5 ()| dr = t£+moo

t——+o0

6.3 The Hyperbolic spaces

Let H"(—c?) be the hyperbolic n-space defined, where ¢ is a non-zero constant:
n 2 0 n n+1 1
H'(—c"):=qx=(z",...,2") € R] (@), = ——,cx0>0¢,
c

where (RY ™, (', ), ) be the Lorentz-Minkowski (n+1)-space. The tangent space T H™(—c?) is the
orthogonal complement x* of @, and the restriction g of the inner product (, ); to Tx H"(—c?)
is positive definite. Thus, (H"(—c?), gg) is a Riemannian manifold, called the hyperbolic n-space.

Theorem 6.5. The hyperbolic space (H"(—c?),ggr) is of constant sectional curvature —c?.

Proof. Notice that H"(—c?) can be expressed as a graph 20 = 1{/1+c2((z")?2+--- + (z")?)
defined on the (z!,...,2™)-hyperplane, that is, it is covered by single chart. Then there exists
a orthonormal frame field [ei,...,e,] defined on entire H"(—c?). Denote by (w'), 2 = (w!)
and K = (x7) the dual frame, the connection form and the curvature form with respect to [e;],
respectively.

Regarding T H"(—c?) as a linear subspace in R?H, we can consider e; as a vector-valued
function. In addition the position vector & € H"(—c?) can be also regarded as a vector-valued
function. Since TpH"(—c?) = =,

(6.5) F = (ep,e1,...,€,): H'(=c*) = M, 11(R) ey =cx
gives a pseudo orthornormal frame along H™(—c?), that is, FIYF =Y (Y := diag(—1,1,...,1))

holds.
As seen in Exercise 5-2, it holds that

(6.6) deg = cdx = cZonej.
j=1
On the other hand, for each j = 1,...,n, decompose the vector-valued one form de; as

dej = hjeo + E ozjes,
s

10Gee, for example, Theorem A.1.4 in [UY17] for n = 2. The idea of the proof works for general n.
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where h; and o are one forms on H"(—c?). Here,
hj = — <d€j,€0>L =—d <ej,eO>L + <ej;deO>L = cwj7

and ,
Ozj = <dejveS>L = d<ej7eS>L - <ej7deS>L = —of.

Differentiating (6.6), it holds that

0= %ddeo = Z(dw-jej —wi Ndej) = Zws ANwliej — ij Najes = ZZw A (Wl —ad)e;
3. g»s

J
because w?/ A w? = 0. Thus, we have Y w® A (w! — o) =0, and then
0= <Zw Al - af)) (61, €m) = ( (€m) — f (em) — (i (e1) — ad(en),

0= (W' (er) — o' (er)) — (wi"(e5) — i (e))) = —(wl, (1) — af, (1)) — (wi"(e;) — ] (e5)),

J
0= (wi,(e5) — al,(€5)) — (Wi(em) — ali(em)) = —(wi" (&) — 7" (e))) + (] (€m) — o (€m)),
which conclude that wlj = a{ . Summing up, we have

(6.7) de; = cwie +Zw es.

Then the frame F in (6.5) satisfies

(6.8) dF = FQ h G0 @’ d w:=(w' mT
: = , where “lew o0 an =(w,...,w
The integrability condition of (6.8) is
=5 Awl' Nw c (dwT +wh' A .Q)
O=d2+02n0= (c(dw—i—(}/\w) A2+ QN2+ PwAw! )

The lower-right components of the identity above yields
Kz + Wi Aw! =0.
Hence the sectional curvature of (H"(—c?),gn) = —c?. O

Remark 6.6. One can show the completeness of (H™(—c?), gy) (cf. MTH.B505). Hence the hyper-
bolic space is a simply connected space form of constant negative sectional curvature.

6.4 Isometries

A C*-map f: M — N between manifolds M and N induces a linear map

(df)p: TyM 3 X — (df)p(X) = 4

il ov(t) € Ty N,

t=0

where v: (—e,e) = M is a smooth curve with v(0) = p and §(0) = X, called the differential of f.
Since p € M is arbitrary, this induces a bundle homomorphism df : TM — T'N.

Definition 6.7. A vector field on N along a smooth map f: M — N isamap X: M — TN
satisfying m o X = f, where w: TN — N is the canonical projection.
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Then for each vector field X € X(M), df(X) is a vector field on N along f.

Definition 6.8. A C*®-map f: M — N between Riemannian manifolds (M, g) and (N, k) is called
a local isometry if dim M = dim N and f*h = g hold, that is,

X, Y) = h(df (X), df (V) = (X, Y)
holds for X, Y € T,M and p € M.
Lemma 6.9. A local isometry is an immersion.
Proof. Let [eq,...,ey,] be a (local) orthonormal frame of M, where n = dim M. Set v; := df(

€;
(j =1,...,n) for a smooth map f: (M,g) — (N,h). If f is a local isometry, [v1(p),...,v,(p)] is
an orthonormal system in T,y N, because

h(vi,v;) = h(df (€:), df (e;)) = [ h(ei, e;) = g(ei, €;).
Hence the differential (df), is of rank n. O

The proof of Lemma 6.9 suggests the following fact:

Corollary 6.10. A smooth map f: (M,g) — (N,h) is a local isometry if and only if for each
peM,

[V1,...,v,] :=[df (e1),...,df (e,)]

is an orthonormal frame for some orthonormal frame [e;] on a neighborhood of p.

6.5 Local uniqueness of space forms

Theorem 6.11. Let U C R" be a simply connected domain and g a Riemannian metric on U. If
the sectional curvature of (U, g) is constant k, there exists a local isometry f: U — N™(k), where

S™(k) (k>0)
N"(k) = R" (k=0)
H" (k) (k < 0).
Proof. Take an orthonormal frame [e1, ..., e,] on U, and let (w/), 2 = (w!) and K = (x!) be the

dual frame, the connection form, and the curvature form with respect to [e;], respectively. Since

the sectional curvature is constant k, ,%g = kw® A w’ holds for each (i,7), because of Theorem 6.1.
First, consider the case k = 0: In this case, K = df2 4+ 2 A {2 = O, and then by Theorem 4.5,
there exists the unique matrix valued function F: U — SO(n) satisfying

dF = F12, F(po) = id,

where pg € U is a fixed point. Decompose the matrix F into column vectors as F = [vy,...,V,],
and define an R™-valued one form
n
o= Z wjvj.
j=1

Then

do = Z(dwjvj — Wl /\dvj) = Z(ws/\wg)vj —Z(oﬂ /\w;>Us =0.

Jss J»s
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Hence by the Poincaré lemma (Theorem 4.8), there exists a smooth map f: U — R”™ satisfying
df = a. For such an f, it holds that

df (es) = a(es) ij €s)Vj = v,

for s =1,...,n. Hence [df(e1),...,df(e,)] = ['vl, ...,Uyp] is an orthonormal frame, and then f is
a local isometry because Corollary 6.10.
Next, consider the case k = —c? < 0. We set

~ 0 cwl
.= (cw 0 ) , where w=

n

as in (6.8) in Section ??. Since /sf = kwi Awl = —wi Awl, dQ2 + 2 A2 = O holds as seen in
Section ?7. Hence there exists an matrix valued function F: U — M,,41(R) satisfying

(6.9) dF =FQ,  Flpo) =id,
where pg € U is a fixed point. Notice that
-1 0 ... 0
~ ~ 0 1 ... 0
ATY +YQ=0 Y= .
0 O 1

holds, B B _ B
dFYF) = FovFr+ FY QT FT = F(Qy + YO FT = 0.

Hence, by the initial condition,
FYF' =Y, thatis, (FY)!=FTY.

Thus, we have

(6.10) FIYF=(FY) ' F=YFlF=Y.
Decompose F = [vg, v1,...,V,]. Then (6.10) is equivalent to
(6.11) —(vo,v0)p = (v1,v1)p = = (Vn,v0)p =1, (v5,v5) =0 (if i # j).

In particular, the O-th component of vy never vanishes, since

1= (00, 00) = — () + () -+ () o = (6,0, )
Moreover, by the initial condition vo(po) = (1,0,...,0)T,
(6.12) vy >0

holds.
Set f := 2vo. Then f: U — R is the desired map. In fact, by (6.11) and (6.12),
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feH"(—c?) = {m =% ..., 2"T eRPH!

(@,@) = ——, ca® > 0}

and
df (e;) = dvo (ej) Zw (ej)vs = vj.

Hence [v;] = [e;] is an orthonormal frame because (6.11).
The case k > 0 is left as an exercise. O
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Ezxercises

6-1 Prove that the sphere
S3(1) ={xz eR*; (z,x) =1}

of radius 1 in the Euclidean 4-space is of constant sectional curvature 1.

6-2 Prove Theorem 6.11 for £k = 1 and n = 2, assuming Exercise 6-1.
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Glossary

1-form 1-JE3, 1 X2 ER, 14

affirm connection 7 7 7 £ »#&#¢, 16
arc-length parameter IR, 7

bilinear XER#E, 15

Cauchy-Riemann equations 23— — ¢« J—<
g, 12

column vector FX2 kL, 3

compatibility condition &5, 9

conjugate $£4%, 13

covariant tensor %7 > VL, 14

covariant L%, 14

curvature tensor HiI¥ 7> Y )L, 26

curvature M=, 7
dual space RUONZER 14

eigenvalue [EH1HE, 3
exterior derivative #M# 77, 16
exterior product 4, 23

flat S, 22
form (#57) ¥, 15
Frenet frame 7L #%, 7

gauge transformation 7" — 244, 17
general linear group (GL(n,R)) —f%#IEEE, 3

harmonic function FAFIEEEL, 12
holomorphic 1ERI GEZBEDY) |, 12

initial value problem FJHAfERIE, 1
integrability condition AIFEZ;Z&1F, 9
Laplacian 7 75> 7>, 12
Levi-Suavity connection L ¥ + 5 X $#5¢, 16
Lie algebra U —1{%K, 14

Lie bracket V —#5ilf#, 14

linear connection ¥R ME, 16

linear function 1 RXBE%K, 2

linear ordinary differential equation KRI85

JitEs, 2
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ordinary differential equation &7 HER, 1
orthogonal group (O(n)) EXEE, 4
orthonormal frame EZ %, 16

partial differential equation IR HFE, 9

regular curve 1EHIHHHR, 7
regular matrix 1ERI{T51, 3
Riemannian connection V) —<~ > &%, 16

second Bianchi identity 2§ ¢ 7 > F1E%E, 28

sectional curvature Wi, 25

simply connected HiEAE, 10, 20

skew-symmeetric matrix AT, TEXFMTH,
4

skew-symmetric 2, R, 15

solution fi#, 1

space curve ZZ[E AR, 7

space form ZE[E, 29

special linear group (SL(n,R)) RRRRIERE, 4

special orthogonal group (SO(n)) FHFREAE, 4

tensor 7> VI, 14
torsion R, 7

trilinear =ERRIE, 15

unknown function ARFIEIEL, 1



