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1 Linear Ordinary Differential Equations

The fundamental theorem for ordinary differential equations. Consider a function

(1.1) f : I × U 3 (t,x) 7−→ f(t,x) ∈ Rm

of class C1, where I ⊂ R is an interval and U ⊂ Rm is a domain in the Euclidean space Rm. For
any fixed t0 ∈ I and x0 ∈ U , the condition

(1.2) d

dt
x(t) = f

(
t,x(t)

)
, x(t0) = x0

of an Rm-valued function t 7→ x(t) is called the initial value problem of ordinary differential
equation for unknown function x(t). A function x : I → U satisfying (1.2) is called a solution of
the initial value problem.
Fact 1.1 (The existence theorem for ODE’s). Let f : I × U → Rm be a C1-function as in (1.1).
Then, for any x0 ∈ U and t0 ∈ I, there exists a positive number ε and a C1-function x : I ∩ (t0 −
ε, t0 + ε) → U satisfying (1.2).

Consider two solutions xj : Jj → U (j = 1, 2) of (1.2) defined on subintervals Jj ⊂ I containing
t0. Then the function x2 is said to be an extension of x1 if J1 ⊂ J2 and x2|J1

= x1. A solution x
of (1.2) is said to be maximal if there are no non-trivial extension of it.
Fact 1.2 (The uniqueness for ODE’s). The maximal solution of (1.2) is unique.
Fact 1.3 (Smoothness of the solutions). If f : I × U → Rm is of class Cr (r = 1, . . . ,∞), the
solution of (1.2) is of class Cr+1. Here, ∞+ 1 = ∞, as a convention.

Let V ⊂ Rk be another domain of Rk and consider a C∞-function

(1.3) h : I × U × V 3 (t,x;α) 7→ h(t,x;α) ∈ Rm.

For fixed t0 ∈ I, we denote by x(t;x0,α) the (unique, maximal) solution of (1.2) for f(t,x) =
h(t,x;α). Then
Fact 1.4. The map (t,x0;α) 7→ x(t;x0,α) is of class C∞.
Example 1.5. (1) Let m = 1, I = R, U = R and f(t, x) = λx, where λ is a constant. Then

x(t) = x0 exp(λt) defined on R is the maximal solution to
d

dt
x(t) = f(t, x(t)) = λx(t), x(0) = x0.

(2) Let m = 2, I = R, U = R2 and f(t; (x, y)) = (y,−ω2x), where ω is a constant. Then(
x(t)
y(t)

)
=

(
x0 cosωt+

y0

ω sinωt
−x0ω sinωt+ y0 cosωt

)
is the unique solution of

d

dt

(
x(t)
y(t)

)
=

(
y(t)

−ω2x(t)

)
,

(
x(0)
y(0)

)
=

(
x0

y0

)
,

defined on R. This differential equation can be considered a single equation
d2

dt2
x(t) = −ω2x(t), x(0) = x0,

dx

dt
(0) = y0

of order 2.

(3) Let m = 1, I = R, U = R and f(t, x) = 1 + x2. Then x(t) = tan t defined on (−π
2 ,

π
2 ) is the

unique maximal solution of the initial value problem
dx

dt
= 1 + x2, x(0) = 0.
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Linear Ordinary Differential Equations. The ordinary differential equation (1.2) is said to
be linear if the function (1.1) is a linear function in x, that is, a linear differential equation is in a
form

d

dt
x(t) = A(t)x(t) + b(t),

where A(t) and b(t) are m×m-matrix-valued and Rm-valued functions in t.
For the sake of later use, we consider, in this lecture, the special form of linear differential

equation for matrix-valued unknown functions as follows: Let Mn(R) be the set of n× n-matrices
with real components, and take functions

Ω : I −→ Mn(R), andB : I −→ Mn(R),

where I ⊂ R is an interval. Identifying Mn(R) with Rn2 , we assume Ω and B are continuous
functions (with respect to the topology of Rn2

= Mn(R)). Then we can consider the linear
ordinary differential equation for matrix-valued unknown X(t) as

(1.4) dX(t)

dt
= X(t)Ω(t) +B(t), X(t0) = X0,

where X0 is given constant matrix.
Then, the fundamental theorem of linear ordinary equation states that the maximal solution

of (1.4) is defined on whole I. To prove this, we prepare some materials related to matrix-valued
functions.

Preliminaries: Matrix Norms. Denote by Mn(R) the set of n × n-matrices with real com-
ponents, which can be identified the vector space Rn2 . In particular, the Euclidean norm of Rn2

induces a norm

(1.5) |X|E =
√
tr(XTX) =

√√√√ n∑
i,j=1

x2
ij

on Mn(R). On the other hand, we let

(1.6) |X|M := sup

{
|Xv|
|v|

; v ∈ Rn \ {0}
}
,

where | · | denotes the Euclidean norm of Rn.

Lemma 1.6. (1) The map X 7→ |X|M is a norm of Mn(R).

(2) For X, Y ∈ Mn(R), it holds that |XY |M 5 |X|M |Y |M.

(3) Let λ = λ(X) be the maximum eigenvalue of semi-positive definite symmetric matrix XTX.
Then |X|M =

√
λ holds.

(4) (1/
√
n)|X|E 5 |X|M 5 |X|E.

(5) The map | · |M : Mn(R) → R is continuous with respect to the Euclidean norm.

Proof. Since |Xv|/|v| is invariant under scalar multiplications to v, we have |X|M = sup{|Xv| ; v ∈
Sn−1}, where Sn−1 is the unit sphere in Rn. Since Sn−1 3 x 7→ |Ax| ∈ R is a continuous function
defined on a compact space, it takes the maximum. Thus, the right-hand side of (1.6) is well-
defined. It is easy to verify that | · |M satisfies the axiom of the norm1.

1|X|M > 0 whenever X 6= O, |αX|M = |α| |X|M, and the triangle inequality.
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Since A := XTX is positive semi-definite, the eigenvalues λj (j = 1, . . . , n) are non-negative
real numbers. In particular, there exists an orthonormal basis [aj ] of Rn satisfying Aaj = λjaj

(j = 1, . . . , n). Let λ be the maximum eigenvalue of A, and write v = v1a1 + · · ·+ vnan. Then it
holds that

〈Xv, Xv〉 = λ1v
2
1 + · · ·+ λnv

2
n 5 λ 〈v,v〉 ,

where 〈 , 〉 is the Euclidean inner product of Rn. The equality of this inequality holds if and only
if v is the λ-eigenvector, proving (3). Noticing the norm (1.5) is invariant under conjugations X 7→
PTXP (P ∈ O(n)), we obtain |X|E =

√
λ2
1 + · · ·+ λ2

n by diagonalizing XTX by an orthogonal
matrix P . Then we obtain (4). Hence two norms | · |E and | · |M induce the same topology as
Mn(R). In particular, we have (5).

Preliminaries: Matrix-valued Functions.
Lemma 1.7. Let X and Y be C∞-maps defined on a domain U ⊂ Rm into Mn(R). Then

(1) ∂

∂uj
(XY ) =

∂X

∂uj
Y +X

∂Y

∂uj
,

(2) ∂

∂uj
detX = tr

(
X̃

∂X

∂uj

)
, and

(3) ∂

∂uj
X−1 = −X−1 ∂X

∂uj
X−1,

where X̃ is the cofactor matrix of X, and we assume in (3) that X is a regular matrix.

Proof. The formula (1) holds because the definition of matrix multiplication and the Leibnitz rule,
Denoting ′ = ∂/∂uj ,

O = (id)′ = (X−1X)′ = (X−1)X ′ + (X−1)′X

implies (3), where id is the identity matrix.
Decompose the matrix X into column vectors as X = (x1, . . . ,xn). Since the determinant is

multi-linear form for n-tuple of column vectors, it holds that

(detX)′ = det(x′
1,x2, . . . ,xn) + det(x1,x

′
2, . . . ,xn) + · · ·+ det(x1,x2, . . . ,x

′
n).

Then by cofactor expansion of the right-hand side, we obtain (2).

Proposition 1.8. Assume two C∞ matrix-valued functions X(t) and Ω(t) satisfy

(1.7) dX(t)

dt
= X(t)Ω(t), X(t0) = X0.

Then

(1.8) detX(t) = (detX0) exp

∫ t

t0

trΩ(τ) dτ

holds. In particular, if X0 ∈ GL(n,R),2 then X(t) ∈ GL(n,R) for all t.

Proof. By (2) of Lemma 1.7, we have

d

dt
detX(t) = tr

(
X̃(t)

dX(t)

dt

)
= tr

(
X̃(t)X(t)Ω(t)

)
= tr

(
detX(t)Ω(t)

)
= detX(t) trΩ(t).

Here, we used the relation X̃X = XX̃ = (detX) id3. Hence d
dt

(
ρ(t)−1 detX(t)

)
= 0, where ρ(t) is

the right-hand side of (1.8).
2GL(n,R) = {A ∈ Mn(R) ; detA 6= 0}: the general linear group.
3In this lecture, id denotes the identity matrix.
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Corollary 1.9. If Ω(t) in (1.7) satisfies trΩ(t) = 0, detX(t) is constant. In particular, if
X0 ∈ SL(n,R), X is a function valued in SL(n,R) 4.

Proposition 1.10. Assume Ω(t) in (1.7) is skew-symmetric for all t, that is, ΩT +Ω is identically
O. If X0 ∈ O(n) (resp. X0 ∈ SO(n))5, then X(t) ∈ O(n) (resp. X(t) ∈ SO(n)) for all t.

Proof. By (1) in Lemma 1.7,

d

dt
(XXT ) =

dX

dt
XT +X

(
dX

dt

)T

= XΩXT +XΩTXT = X(Ω +ΩT )XT = O.

Hence XXT is constant, that is, if X0 ∈ O(n),

X(t)X(t)T = X(t0)X(t0)
T = X0X

T
0 = id .

If X0 ∈ O(n), this proves the first case of the proposition. Since detA = ±1 when A ∈ O(n), the
second case follows by continuity of detX(t).

Preliminaries: Norms of Matrix-Valued functions. Let I = [a, b] be a closed interval, and
denote by C0(I,Mn(R)) the set of continuous functions X : I → Mn(R). For any positive number
k, we define

(1.9) ||X||I,k := sup
{
e−kt|X(t)|M ; t ∈ I

}
for X ∈ C0(I,Mn(R)). When k = 0, || · ||I,0 is the uniform norm for continuous functions, which
is complete. Similarly, one can prove the following in the same way:

Lemma 1.11. The norm || · ||I,k on C0(I,Mn(R)) is complete.

Linear Ordinary Differential Equations. We prove the fundamental theorem for linear or-
dinary differential equations.

Proposition 1.12. Let Ω(t) be a C∞-function valued in Mn(R) defined on an interval I. Then
for each t0 ∈ I, there exists the unique matrix-valued C∞-function X(t) = Xt0,id(t) such that

(1.10) dX(t)

dt
= X(t)Ω(t), X(t0) = id .

Proof. Uniqueness: Assume X(t) and Y (t) satisfy (1.10). Then

Y (t)−X(t) =

∫ t

t0

(
Y ′(τ)−X ′(τ)

)
dτ =

∫ t

t0

(
Y (τ)−X(τ)

)
Ω(τ) dτ

(
′ =

d

dt

)
holds. Hence for an arbitrary closed interval J ⊂ I,

|Y (t)−X(t)|M 5

∣∣∣∣∫ t

t0

∣∣(Y (τ)−X(τ)
)
Ω(τ)

∣∣
M
dτ

∣∣∣∣ 5 ∣∣∣∣∫ t

t0

|Y (τ)−X(τ)|M |Ω(τ)|M dτ

∣∣∣∣
=

∣∣∣∣∫ t

t0

e−kτ |Y (τ)−X(τ)|M ekτ |Ω(τ)|M dτ

∣∣∣∣ 5 ||Y −X||J,k sup
J

|Ω|M
∣∣∣∣∫ t

t0

ekτ dτ

∣∣∣∣
= ||Y −X||J,k

supJ |Ω|M
|k|

ekt
∣∣∣1− e−k(t−t0)

∣∣∣ 5 ||Y −X||J,k sup
J

|Ω|M
ekt

|k|
4SL(n,R) = {A ∈ Mn(R) ; detA = 1}; the special lienar group.
5O(n) = {A ∈ Mn(R) ; ATA = AAT = id}: the orthogonal group; SO(n) = {A ∈ O(n) ; detA = 1}: the special

orthogonal group.
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holds for t ∈ J . Thus, for an appropriate choice of k ∈ R, it holds that

||Y −X||J,k 5
1

2
||Y −X||J,k,

that is, ||Y −X||J,k = 0, proving Y (t) = X(t) for t ∈ J . Since J is arbitrary, Y = X holds on I.
Existence: Let J := [t0, a] ⊂ I be a closed interval, and define a sequence {Xj} of matrix-valued
functions defined on I satisfying X0(t) = id and

(1.11) Xj+1(t) = id+

∫ t

t0

Xj(τ)Ω(τ) dτ (j = 0, 1, 2, . . . ).

Let k := 2 supJ |Ω|M. Then

|Xj+1(t)−Xj(t)|M 5
∫ t

t0

|Xj(τ)−Xj−1(τ)|M|Ω(τ)|M dτ

5
ek(t−t0)

|k|
sup
J

|Ω|M||Xj −Xj−1||J,k

for an appropriate choice of k ∈ R, and hence ||Xj+1 −Xj ||J,k 5 1
2 ||Xj −Xj−1||J,k, that is, {Xj}

is a Cauchy sequence with respect to || · ||J,k. Thus, by completeness (Lemma 1.11), it converges
to some X ∈ C0(J,Mn(R)). By (1.11), the limit X satisfies

X(t0) = id, X(t) = id+

∫ t

t0

X(τ)Ω(τ) dτ.

Applying the fundamental theorem of calculus, we can see that X satisfies X ′(t) = X(t)Ω(t)
(′ = d/dt). Since J can be taken arbitrarily, existence of the solution on I is proven.

Finally, we shall prove that X is of class C∞. Since X ′(t) = X(t)Ω(t), the derivative X ′ of
X is continuous. Hence X is of class C1, and so is X(t)Ω(t). Thus we have that X ′(t) is of class
C1, and then X is of class C2. Iterating this argument, we can prove that X(t) is of class Cr for
arbitrary r.

Corollary 1.13. Let Ω(t) be a matrix-valued C∞-function defined on an interval I. Then for
each t0 ∈ I and X0 ∈ Mn(R), there exists the unique matrix-valued C∞-function Xt0,X0

(t) defined
on I such that

(1.12) dX(t)

dt
= X(t)Ω(t), X(t0) = X0

(
X(t) := Xt0,X0

(t)
)

In particular, Xt0,X0
(t) is of class C∞ in X0 and t.

Proof. We rewrite X(t) in Proposition 1.12 as Y (t) = Xt0,id(t). Then the function

(1.13) X(t) := X0Y (t) = X0Xt0,id(t),

is desired one. Conversely, assume X(t) satisfies the conclusion. Noticing Y (t) is a regular matrix
for all t because of Proposition 1.8,

W (t) := X(t)Y (t)−1

satisfies
dW

dt
=

dX

dt
Y −1 −XY −1 dY

dt
Y −1 = XΩY −1 −XY −1Y ΩY −1 = O.

Hence
W (t) = W (t0) = X(t0)Y (t0)

−1 = X0.

Hence the uniqueness is obtained. The final part is obvious by the expression (1.13).
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Proposition 1.14. Let Ω(t) and B(t) be matrix-valued C∞-functions defined on I. Then for each
t0 ∈ I and X0 ∈ Mn(R), there exists the unique matrix-valued C∞-function defined on I satisfying

(1.14) dX(t)

dt
= X(t)Ω(t) +B(t), X(t0) = X0.

Proof. Rewrite X in Proposition 1.12 as Y := Xt0,id. Then

(1.15) X(t) =

(
X0 +

∫ t

t0

B(τ)Y −1(τ) dτ

)
Y (t)

satisfies (1.14). Conversely, if X satisfies (1.14), W := XY −1 satisfies

X ′ = W ′Y +WY ′ = W ′Y +WYΩ, XΩ +B = WYΩ +B,

and then we have W ′ = BY −1. Since W (t0) = X0,

W = X0 +

∫ t

t0

B(τ)Y −1(τ) dτ.

Thus we obtain (1.15).

Theorem 1.15. Let I and U be an interval and a domain in Rm, respectively, and let Ω(t,α) and
B(t,α) be matrix-valued C∞-functions defined on I×U (α = (α1, . . . , αm)). Then for each t0 ∈ I,
α ∈ U and X0 ∈ Mn(R), there exists the unique matrix-valued C∞-function X(t) = Xt0,X0,α(t)
defined on I such that

(1.16) dX(t)

dt
= X(t)Ω(t,α) +B(t,α), X(t0) = X0.

Moreover,
I × I ×Mn(R)× U 3 (t, t0, X0,α) 7→ Xt0,X0,α(t) ∈ Mn(R)

is a C∞-map.

Proof. Let Ω̃(t, α̃) := Ω(t + t0,α) and B̃(t, α̃) = B(t + t0,α), and let X̃(t) := X(t + t0). Then
(1.16) is equivalent to

(1.17) dX̃(t)

dt
= X̃(t)Ω̃(t, α̃) + B̃(t, α̃), X̃(0) = X0,

where α̃ := (t0, α1, . . . , αm). There exists the unique solution X̃(t) = X̃0,X0,α̃(t) of (1.17) for
each α̃ because of Proposition 1.14. So it is sufficient to show differentiability with respect to the
parameter α̃. We set Z = Z(t) the unique solution of

(1.18) dZ

dt
= ZΩ̃ + X̃

∂Ω̃

∂αj
+

∂B̃

∂αj
, Z(0) = O.

Then it holds that Z = ∂X̃/∂αj . In particular, by the proof of Proposition 1.14, it holds that

Z=
∂X̃

∂αj
=

(∫ t

0

(
X̃(τ)

∂Ω̃(τ, α̃)

∂αj
+

∂B̃(τ, α̃)

∂αj

)
Y −1(τ)dτ

)
Y (t).

Here, Y (t) is the unique matrix-valued C∞-function satisfying Y ′(t) = Y (t)Ω̃(t, α̃), and Y (0) = id.
Hence X̃ is a C∞-function in (t, α̃).
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Fundamental Theorem for Space Curves. As an application, we prove the fundamental
theorem for space curves. A C∞-map γ : I → R3 defined on an interval I ⊂ R into R3 is said to
be a regular curve if γ̇ 6= 0 holds on I. For a regular curve γ(t), there exists a parameter change
t = t(s) such that γ̃(s) := γ(t(s)) satisfies |γ̃′(s)| = 1. Such a parameter s is called the arc-length
parameter.

Let γ(s) be a regular curve in R3 parametrized by the arc-length satisfying γ′′(s) 6= 0 for all s.
Then

e(s) := γ′(s), n(s) :=
γ′′(s)

|γ′′(s)|
, b(s) := e(s)× n(s)

forms a positively oriented orthonormal basis {e,n, b} of R3 for each s. Regarding each vector as
column vector, we have the matrix-valued function

(1.19) F(s) := (e(s),n(s), b(s)) ∈ SO(3).

in s, which is called the Frenet frame associated to the curve γ. Under the situation above, we set

κ(s) := |γ′′(s)| > 0, τ(s) := −
〈
b′(s),n(s)

〉
,

which are called the curvature and torsion, respectively, of γ. Using these quantities, the Frenet
frame satisfies

(1.20) dF
ds

= FΩ, Ω =

0 −κ 0
κ 0 −τ
0 τ 0

 .

Proposition 1.16. The curvature and the torsion are invariant under the transformation x 7→
Ax + b of R3 (A ∈ SO(3), b ∈ R3). Conversely, two curves γ1(s), γ2(s) parametrized by arc-
length parameter have common curvature and torsion, there exist A ∈ SO(3) and b ∈ R3 such that
γ2 = Aγ1 + b.

Proof. Let κ, τ and F1 be the curvature, torsion and the Frenet frame of γ1, respectively. Then
the Frenet frame of γ2 = Aγ1+b (A ∈ SO(3), b ∈ R3) is F2 = AF1. Hence both F1 and F2 satisfy
(1.20), and then γ1 and γ2 have common curvature and torsion.

Conversely, assume γ1 and γ2 have common curvature and torsion. Then the frenet frame F1,
F2 both satisfy (1.20). Let F be the unique solution of (1.20) with F(t0) = id. Then by the
proof of Corollary 1.13, we have Fj(t) = Fj(t0)F(t) (j = 1, 2). In particular, since Fj ∈ SO(3),
F2(t) = AF1(t) (A := F2(t0)F1(t0)

−1 ∈ SO(3)). Comparing the first column of these, γ′
2(s) =

Aγ′
1(t) holds. Integrating this, the conclusion follows.

Theorem 1.17 (The fundamental theorem for space curves).
Let κ(s) and τ(s) be C∞-functions defined on an interval I satisfying κ(s) > 0 on I. Then there
exists a space curve γ(s) parametrized by arc-length whose curvature and torsion are κ and τ ,
respectively. Moreover, such a curve is unique up to transformation x 7→ Ax + b (A ∈ SO(3),
b ∈ R3) of R3.

Proof. We have already shown the uniqueness in Proposition 1.16. We shall prove the existence:
Let Ω(s) be as in (1.20), and F(s) the solution of (1.20) with F(s0) = id. Since Ω is skew-
symmetric, F(s) ∈ SO(3) by Proposition 1.10. Denoting the column vectors of F by e, n, b, and
let

γ(s) :=

∫ s

s0

e(σ) dσ.

Then F is the Frenet frame of γ, and κ, and τ are the curvature and torsion of γ, respectively.
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Exercises

1-1 Find the maximal solution of the initial value problem

dx

dt
= x(1− x), x(0) = a,

where b is a real number.

1-2 Find an explicit expression of a space curve γ(s) parametrized by the arc-length s, whose
curvature κ and torsion τ satisfy

κ = τ =
1√

2(1 + s2)
.
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2 Integrability Conditions

Let U ⊂ Rm be a domain of (Rm;u1, . . . , um) and consider an m-tuple of n × n-matrix valued
C∞-maps

(2.1) Ωj : Rm ⊃ U −→ Mn(R) (j = 1, . . . ,m).

In this section, we consider an initial value problem of a system of linear partial differential equa-
tions

(2.2) ∂X

∂uj
= XΩj (j = 1, . . . ,m), X(P0) = X0,

where P0 = (u1
0, . . . , u

m
0 ) ∈ U is a fixed point, X is an n × n-matrix valued unknown, and X0 ∈

Mn(R).

Proposition 2.1. If a C∞-map X : U → Mn(R) defined on a domain U ⊂ Rm satisfies (4.1)
with X0 ∈ GL(n,R), then X(P) ∈ GL(n,R) for all P ∈ U . In addition, if Ωj (j = 1, . . . ,m) are
skew-symmetric and X0 ∈ SO(n), then X(P) ∈ SO(n) holds for all P ∈ U .

Proof. Since U is connected, there exists a continuous path γ0 : [0, 1] → U such that γ0(0) = P0

and γ0(1) = P. By Whitney’s approximation theorem (cf. Theorem 6.21 in [Lee13]), there exists
a smooth path γ : [0, 1] → U joining P0 and P approximating γ0. Since X̂ := X ◦ γ satisfies (2.4)
with X̂(0) = X0, Proposition 1.8 yields that det X̂(1) 6= 0 whenever detX0 6= 0. Moreover, if Ωj ’s
are skew-symmetric, so is Ωγ(t) in (2.4). Thus, by Proposition 1.10, we obtain the latter half of
the proposition.

Proposition 2.2. If a matrix-valued C∞ function X : U → GL(n,R) satisfies (4.1), it holds that

(2.3) ∂Ωj

∂uk
− ∂Ωk

∂uj
= ΩjΩk −ΩkΩj

for each (j, k) with 1 5 j < k 5 m.

Proof. Differentiating (4.1) by uk, we have

∂2X

∂uk∂uj
=

∂X

∂uk
Ωj +X

∂Ωj

∂uk
= X

(
∂Ωj

∂uk
+ΩkΩj

)
.

On the other hand, switching the roles of j and k, we get

∂2X

∂uj∂uk
= X

(
∂Ωk

∂uj
+ΩjΩk

)
.

Since X is of class C∞, the left-hand sides of these equalities coincide, and so are the right-hand
sides. Since X ∈ GL(n,R), the conclusion follows.

The equality (2.3) is called the integrability condition or compatibility condition of (4.1).
The chain rule yields the following:

Lemma 2.3. Let X : U → Mn(R) be a C∞-map satisfying (4.1). Then for each smooth path
γ : I → U defined on an interval I ⊂ R, X̂ := X ◦ γ : I → Mn(R) satisfies the ordinary differential
equation

(2.4) dX̂

dt
(t) = X̂(t)Ωγ(t)

Ωγ(t) :=

m∑
j=1

Ωj ◦ γ(t)
duj

dt
(t)


on I, where γ(t) =

(
u1(t), . . . , um(t)

)
.

20. June, 2023. Revised: 27. June, 2023)
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Lemma 2.4. Let Ωj : U → Mn(R) (j = 1, . . . ,m) be C∞-maps defined on a domain U ⊂ Rm

which satisfy (2.3). Then for each smooth map

σ : D 3 (t, w) 7−→ σ(t, w) = (u1(t, w), . . . , um(t, w)) ∈ U

defined on a domain D ⊂ R2, it holds that

(2.5) ∂T

∂w
− ∂W

∂t
− TW +WT = 0,

where

(2.6) T :=

m∑
j=1

Ω̃j
∂uj

∂t
, W :=

m∑
j=1

Ω̃j
∂uj

∂w
(Ω̃j := Ωj ◦ σ).

Proof. By the chain rule, we have

∂T

∂w
=

m∑
j,k=1

∂Ωj

∂uk

∂uk

∂w

∂uj

∂t
+

m∑
j=1

Ω̃j
∂2uj

∂w∂t
,

∂W

∂t
=

m∑
j,k=1

∂Ωj

∂uk

∂uk

∂t

∂uj

∂w
+

m∑
j=1

Ω̃j
∂2uj

∂t∂w

=

m∑
j,k=1

∂Ωk

∂uj

∂uj

∂t

∂uk

∂w
+

m∑
j=1

Ω̃j
∂2uj

∂t∂w
.

Hence

∂T

∂w
− ∂W

∂t
=

m∑
j,k=1

(
∂Ωj

∂uk
− ∂Ωk

∂uj

)
∂uk

∂w

∂uj

∂t

=

m∑
j,k=1

(
Ω̃jΩ̃k − Ω̃kΩ̃j

) ∂uk

∂w

∂uj

∂t

=

 m∑
j=1

Ω̃j
∂uj

∂t

( m∑
k=1

Ω̃k
∂uk

∂w

)
−
(

m∑
k=1

Ω̃k
∂uk

∂w

) m∑
j=1

Ω̃j
∂uj

∂t


= TW −WT.

Thus (2.5) holds.

Integrability of linear systems. The main theorem in this section is the following theorem:

Theorem 2.5. Let Ωj : U → Mn(R) (j = 1, . . . ,m) be C∞-functions defined on a simply connected
domain U ⊂ Rm satisfying (2.3). Then for each P0 ∈ U and X0 ∈ Mn(R), there exists the unique
n× n-matrix valued function X : U → Mn(R) satisfying (4.1). Moreover,

• if X0 ∈ GL(n,R), X(P) ∈ GL(n,R) holds on U ,

• if X0 ∈ SO(n) and Ωj (j = 1, . . . ,m) are skew-symmetric matrices, X ∈ SO(n) holds on U .

Proof. The latter half is a direct conclusion of Proposition 2.1. We show the existence of X: Take
a smooth path γ : [0, 1] → U joining P0 and P. Then by Theorem 1.15, there exists a unique
C∞-map X̂ : [0, 1] → Mn(R) satisfying (2.4) with initial condition X̂(0) = X0.

We shall show that the value X̂(1) does not depend on choice of paths joining P0 and P. To
show this, choose another smooth path γ̃ joining P0 and P. Since U is simply connected, there
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exists a homotopy between γ and γ̃, that is, there exists a continuous map σ0 : [0, 1] × [0, 1] 3
(t, w) 7→ σ(t, w) ∈ U satisfying

(2.7)
σ0(t, 0) = γ(t), σ0(t, 1) = γ̃(t),

σ0(0, w) = P0, σ0(1, w) = P.

Then, by Whitney’s approximation theorem (Theorem 6.21 in [Lee13]) again, there exists a smooth
map σ : [0, 1]× [0, 1] → U satisfying the same boundary conditions as (2.7):

(2.8)
σ(t, 0) = γ(t), σ(t, 1) = γ̃(t),

σ(0, w) = P0, σ(1, w) = P.

We set T and W as in (2.6). For each fixed w ∈ [0, 1], there exists Xw : [0, 1] → Mn(R) such that

dXw

dt
(t) = Xw(t)T (t, w), Xw(0) = X0.

Since T (t, w) is smooth in t and w, the map

X̌ : [0, 1]× [0, 1] 3 (t, w) 7→ Xw(t) ∈ Mn(R)

is a smooth map, because of smoothness in parameter α in Theorem 1.15. To show that X̂(1) =
X̌(1, 0) does not depend on choice of paths, it is sufficient to show that

(2.9) ∂X̌

∂w
= X̌W

holds on [0, 1]× [0, 1]. In fact, by (2.8), W (1, w) = 0 for all w ∈ [0, 1], and then (2.9) implies that
X̌(1, w) is constant.

We prove (2.9): By definition, it holds that

(2.10) ∂X̌

∂t
= X̌T, X̌(0, w) = X0

for each w ∈ [0, 1]. Hence by (2.5),

∂

∂t

∂X̌

∂w
=

∂2X̌

∂t∂w
=

∂2X̌

∂w∂t
=

∂

∂w
(X̌T )

=
∂X̌

∂w
T + X̌

∂T

∂w
=

∂X̌

∂w
T + X̌

(
∂W

∂t
+ TW −WT

)
=

∂X̌

∂w
T + X̌

∂W

∂t
+

∂X̌

∂t
W − X̌WT

=
∂

∂t

(
X̌W

)
+

(
∂X̌

∂w
− X̌W

)
T.

So, the function Yw(t) := ∂X̌/∂w − X̌W satisfies the ordinary differential equation

dYw

dt
(t) = Yw(t)T (t, w), Yw(0) = O

for each w ∈ [0, 1]. Thus, by the uniqueness of the solution, Yw(t) = O holds on [0, 1] × [0, 1].
Hence we have (2.9).

Thus, X̂(1) depends only on the end point P of the path. Hence we can set X(P) := X̂(1) for
each P ∈ U , and obtain a map X : U → Mn(R). Finally we show that X is the desired solution.
The initial condition X(P0) = X0 is obviously satisfied. On the other hand, if we set

Z(δ) := X(u1, . . . , uj + δ, . . . , um),
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Z(δ) satisfies the equation (2.4) for the path γ(δ) := (u1, . . . , uj + δ, . . . , um) with Z(0) = X(P).
Since Ωγ = Ωj ,

∂X

∂uj
(P) =

dZ

dδ

∣∣∣∣
δ=0

= Z(0)Ωj(P) = X(P)Ωj(P)

which completes the proof.

Application: Poincaré’s lemma.

Theorem 2.6 (Poincaré’s lemma). If a differential 1-form

ω =

m∑
j=1

αj(u
1, . . . , um) duj

defined on a simply connected domain U ⊂ Rm is closed, that is, dω = 0 holds, then there exists a
C∞-function f on U such that df = ω. Such a function f is unique up to additive constants.

Proof. Since

dω =
∑
i<j

(
∂αj

∂ui
− ∂αi

∂uj

)
dui ∧ duj ,

the assumption is equivalent to

(2.11) ∂αj

∂ui
− ∂αi

∂uj
= 0 (1 5 i < j 5 m).

Consider a system of linear partial differential equations with unknown ξ, a 1 × 1-matrix valued
function (i.e. a real-valued function), as

(2.12) ∂ξ

∂uj
= ξαj (j = 1, . . . ,m), ξ(u1

0, . . . , u
m
0 ) = 1.

Then it satisfies (2.3) because of (2.11). Hence by Theorem 4.5, there exists a smooth function
ξ(u1, . . . , um) satisfying (2.12). In particular, Proposition 1.8 yields ξ = det ξ never vanishes.
Hence ξ(u1

0, . . . , u
m
0 ) = 1 > 0 means that ξ > 0 holds on U . Letting f := log ξ, we have the

function f satisfying df = ω.
Next, we show the uniqueness: if two functions f and g satisfy df = dg = ω, it holds that

d(f − g) = 0. Hence by connectivity of U , f − g must be constant.

Application: Conjugation of Harmonic functions. In this paragraph, we identify R2 with
the complex plane C. It is well-known that a smooth function

(2.13) f : U 3 u+ i v 7−→ ξ(u, v) + i η(u, v) ∈ C (i =
√
−1)

defined on a domain U ⊂ C is holomorphic if and only if it satisfies the following relation, called
the Cauchy-Riemann equations:

(2.14) ∂ξ

∂u
=

∂η

∂v
,

∂ξ

∂v
= −∂η

∂u
.

Definition 2.7. A function f : U → R defined on a domain U ⊂ R2 is said to be harmonic if it
satisfies

∆f = fuu + fvv = 0.

The operator ∆ is called the Laplacian.
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Proposition 2.8. If function f in (2.13) is holomorphic, ξ(u, v) and η(u, v) are harmonic func-
tions.
Proof. By (2.14), we have

ξuu = (ξu)u = (ηv)u = ηvu = ηuv = (ηu)v = (−ξv)v = −ξvv.

Hence ∆ξ = 0. Similarly,

ηuu = (−ξv)u = −ξvu = −ξuv = −(ξu)v = −(ηv)v = −ηvv.

Thus ∆η = 0.

Theorem 2.9. Let U ⊂ C = R2 be a simply connected domain and ξ(u, v) a C∞-function harmonic
on U6. Then there exists a C∞ harmonic function η on U such that ξ(u, v)+i η(u, v) is holomorphic
on U .
Proof. Let α := −ξv du+ ξu dv. Then by the assumption,

dα = (ξvv + ξuu) du ∧ dv = 0

holds, that is, α is a closed 1-form. Hence by simple connectivity of U and the Poincaré’s lemma
(Theorem 4.8), there exists a function η such that dη = ηu du + ηv dv = α. Such a function η
satisfies (2.14) for given ξ. Hence ξ + i η is holomorphic in u+ i v.

Example 2.10. A function ξ(u, v) = eu cos v is harmonic. Set

α := −ξv du+ ξu dv = eu sin v du+ eu cos v dv.

Then η(u, v) = eu sin v satisfies dη = α. Hence

ξ + i η = eu(cos v + i sin v) = eu+i v

is holomorphic in u+ i v.
Definition 2.11. The harmonic function η in Theorem 2.9 is called the conjugate harmonic func-
tion of ξ.

Exercises

2-1 Let ξ(u, v) := log
√
u2 + v2 be a function defined on U := R2 \ {(0, 0)}.

(1) Show that ξ is harmonic on U .
(2) Find the conjugate harmonic function η of ξ on

V = R2 \ {(u, 0) |u 5 0} ⊂ U.

(3) Show that there exists no conjugate harmonic function of ξ defined on U .

2-2 Consider a linear system of partial differential equations for 3× 3-matrix valued unknown X
on a domain U ⊂ R2 as

∂X

∂u
= XΩ,

∂X

∂v
= XΛ,

Ω :=

 0 −α −h1
1

α 0 −h2
1

h1
1 h2

1 0

 , Λ :=

 0 −β −h1
2

β 0 −h2
2

h1
2 h2

2 0

 ,

where (u, v) are the canonical coordinate system of R2, and α, β and hi
j (i, j = 1, 2) are

smooth functions defined on U . Write down the integrability conditions in terms of α, β and
hi
j .

6The theorem holds under the assumption of C2-differentiablity.
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3 Differential Forms

Let M be an n-dimensional manifold and denote by F(M) and X(M) the set of smooth function
and the set of smooth vector fields on M , respectively.

Lie brackets A vector field X ∈ X(M) can be considered as a differential operator acting on
F(M) as (Xf)(p) = Xpf . By definition it satisfies the Leibniz rule

(3.1) X(fg) = f(Xg) + g(Xf) (X ∈ X(M), f, g ∈ F(M)).

For two vector fields X, Y ∈ X(M), set

(3.2) [X,Y ] : F(M) 3 f 7−→ X(Y f)− Y (Xf) ∈ F(M).

Then [X,Y ] also satisfies the Leibnitz rule (3.1), and gives a vector field on M . The map

[ , ] : X(M)× X(M) 3 (X,Y ) 7→ [X,Y ] ∈ X(M)

is called the Lie bracket on X(M). One can easily show that the product [ , ] is bilinear, skew
symmetric and satisfies the Jacobi identity

(3.3) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0,

that is, (X(M), [ , ]) is a Lie algebra (of infinite dimension). By the Leibniz rule, it holds that

(3.4) [fX, Y ] = f [X,Y ]− (Y f)X, [X, fY ] = f [X,Y ] + (Xf)Y (X,Y ∈ X(M), f ∈ F(M)).

Tensors. For each p ∈ M , the dual space T ∗
pM of TpM is the liner space consisting of all linear

maps from TpM to R.

Lemma 3.1. Let (x1, . . . , xn) be a local coordinate system of M around p, and set(
∂

∂xj

)
p

: F(M) 3 f 7→ ∂f

∂xj
(p), (dxj)p : TpM → R with (dxj)p

((
∂

∂xk

)
p

)
= δjk

for j, k = 1, . . . , n. Then {(∂/∂xj)p}j=1,...,n and {(dxj)p}j=1,...,n are a basis of TpM and T ∗
pM ,

respectively, where δjk denotes Kronecker’s delta symbol.

We let
T ∗
pM ⊗ T ∗

pM
(
resp. T ∗

pM ⊗ T ∗
pM ⊗ T ∗

pM
)

the set of bilinear (resp. trilinear) maps of TpM ×TpM (resp. TpM ×TpM ×TpM) to R. A section
of the vector bundle

T ∗M ⊗ T ∗M :=
⋃
p∈M

T ∗
pM ⊗ T ∗

pM

resp. T ∗M ⊗ T ∗M ⊗ T ∗M :=
⋃
p∈M

T ∗
pM ⊗ T ∗

pM ⊗ T ∗
pM


is called a covariant 2 (resp. 3)-tensor.

A section ω ∈ Γ (T ∗M) of the cotangent bundle T ∗M is called a covariant 1-tensor or a 1-form.
A one form ω induces a linear map

(3.5) ω : X(M) 3 X 7−→ ω(X) ∈ F(M), where ω(X)(p) = ωp(Xp)

By definition, it holds that

(3.6) ω(fX) = fω(X) (f ∈ F(M), X ∈ X(M)).

27. June, 2023. Revised: 04. July, 2023)
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Lemma 3.2. A linear map ω : X(M) → F(M) is a 1-form if and only if (3.6) holds.

Proof. The “only if” part is trivial by definition. Assume a linear map ω : X(M) → F(M) satisfies
(3.6). In fact, under a local coordinate system (x1, . . . , xn) around p ∈ M ,

ω(X)(p) = ω

 n∑
j=1

Xj ∂

∂xj

 (p) =

n∑
j=1

Xj(p)ω

(
∂

∂xj

)
p

,

X =

n∑
j=1

Xj ∂

∂xj
.


holds. In other words, ω(X)(p) depend only on Xp. Hence ω induces a map ωp : TpM → R.

Similarly, a covariant 2 (resp. 3) tensor α ∈ Γ (T ∗M ⊗ T ∗M) (resp. β ∈ Γ (T ∗M ⊗ T ∗M ⊗
T ∗M))induces a bilinear (resp. trilinear) map α : X(M) × X(M) → F(M). (resp. β : X(M) ×
X(M)× X(M) → F(M). By the same reason as Lemma 3.2, we have

Lemma 3.3. A bilinear map α : X(M)×X(M) → F(M) (resp. β : X(M)×X(M)×X(M) → F(M))
is a a covariant 2 (resp. 3)-tensor if and only if

α(fX, Y ) = α(X, fY ) = fα(X,Y )(
resp. β(fX, Y, Z) = β(X, fY, Z) = β(X,Y, fZ) = fβ(X,Y, Z)

)
holds for all X, Y , Z ∈ X(M) and f ∈ F(M).

A covariant 2 (resp. 3)-tensor α (resp. β) said to be skew-symmetric if

α(X,Y ) = −α(Y,X),
(
β(X,Y, Z) = −β(Y,X,Z) = −β(X,Z, Y ) = −β(Z, Y,X)

)
holds for all X, Y , Z ∈ X(M). We denote

(3.7) ∧k(M) :=


F(M) (k = 0),

Γ (T ∗M) (k = 1),{
ω ∈ Γ

(
T ∗M ⊗ T ∗M

)
; ω is skew-symmetric

}
(k = 2),{

ω ∈ Γ
(
T ∗M ⊗ T ∗M ⊗ T ∗M

)
; ω is skew-symmetric

}
(k = 3).

An element of ∧k(M) is called an k-form.

The Exterior products. The exterior product α ∧ β ∈ ∧2(M) of two 1-forms α, β ∈ ∧1(M) is
defined as

(3.8) (α ∧ β)(X,Y ) := α(X)β(Y )− α(Y )β(X).

On the other hand, the exterior product of α and ω is defined as a 3-form on M by

(3.9) (α ∧ ω)(X,Y, Z) = (ω ∧ α)(X,Y, Z) := α(X,Y )ω(Z) + α(Y, Z)ω(X) + α(Z,X)ω(Y ).

Then by a direct computation together with (3.8), it holds that

(3.10) (µ ∧ ω) ∧ λ = µ ∧ (ω ∧ λ)

(
=: µ ∧ ω ∧ λ

)
for 1-forms µ, ω and λ.
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The Exterior derivative. Under a local coordinate system (x1, . . . , xn), a one form α and a
two form ω are expressed as

α =

n∑
j=1

αj dx
j , ω =

∑
15i<j5n

ωij dx
i ∧ dxj ,

where αj (j = 1, . . . , n) and ωij (1 5 i < j 5 n) are smooth functions in (x1, . . . , xn). By
Lemma 3.3 and the property (3.4) of the Lie brackets, we have

Lemma 3.4. For a function f ∈ F(M) = ∧0(M), a 1-form α ∈ ∧1(M) and a 2-form β ∈ ∧2(M))

df : X(M) 3 X 7→ df(X) = Xf ∈ F(M),

dα : X(M)× X(M) 3 (X,Y ) 7→ Xα(Y )− Y α(X)− α([X,Y ]) ∈ F(M)

dβ : X(M)× X(M)× X(M) 3 (X,Y, Z) 7→
Xβ(Y, Z) + Y β(Z,X) + Zβ(X,Y )− β([X,Y ], Z)− β([Y, Z], Z)− β([Z,X], Y )

are a 1-form, a 2-form and a 3-form respectively.

Definition 3.5. For a function f , a 1-form α and a 2-form β, df , dα and dβ are called the exterior
derivatives of f , α and β, respectively.

Then, for one forms µ and ω, we have

(3.11) ddω = 0, d(µ ∧ ω) = dµ ∧ ω − µ ∧ dω,

by the definition and the Jacobi identity (3.3).

The Riemannian connection. In the rest of this section, we let (M, g) be an n-dimensional
(pseudo) Riemannian manifold, and denote by 〈 , 〉 the inner product induced by g.

Lemma 3.6. There exists the unique bilinear map ∇ : X(M)× X(M) 3 (X,Y ) 7→ ∇XY ∈ X(M)
satisfying

(3.12) ∇XY −∇Y X = [X,Y ], X 〈Y, Z〉 = 〈∇XY, Z〉+ 〈X,∇XZ〉 (X,Y, Z ∈ X(M))

Definition 3.7. The map ∇ in Lemma 3.6 is called the Riemannian connection or the Levi-Civita
connection of (M, g).

Lemma 3.8. The Riemannian connection ∇ satisfies

(3.13) ∇fXY = f∇XY, ∇X(fY ) = (Xf)Y + f∇XY.

Remark 3.9. A bilinear map ∇ : X(M) × X(M) → X(M) satisfying (3.13) is called a linear con-
nection or an affine connection.
Remark 3.10. By Lemmas 3.8 and 3.2, X 7→ ∇XY determines a one form.

Orthonormal frames. For a sake of simplicity, we assume that g is positive definite, in other
words, (M, g) is a Riemannian manifold.

Definition 3.11. Let U ⊂ M be a domain of M . An n-tuple of vector fields {e1, . . . , en} on U
is called an orthonormal frame on U if 〈ei, ej〉 = δij . It is said to be positive if M is oriented and
{ej} is compatible to the orientation on M .

Remark 3.12. For each p ∈ M , there exists a neighborhood U of p which admits an orthonormal
frame on U .



17 MTH.B506; Sect. 3

Lemma 3.13. Let {ej} and {vj} be two orthonormal frames on U ⊂ M . Then there exists a
smooth map

(3.14) Θ : U −→ O(n) such that [e1, . . . , en] = [v1, . . . ,vn]Θ.

Moreover, if {ej} and {vj} determines the common orientation, Θ is valued on SO(n).

The map Θ in Lemma 3.13 is called a gauge transformation.
For an orthonormal frame {ej} on U , we denote by {ωj}j=1,...,n the dual frame of {ej}, that

is, ωj ∈ ∧1(U) such that

ωj(ek) = δjk =

{
1 (j = k)

0 (otherwise).

In other words, ωj(X) = 〈ej , X〉.

Lemma 3.14. Two orthonormal frames {ej} and {vj} are related as (3.14). Then their duals
{ωj} and {λj} satisfy λ1

...
λn

 = Θ

ω1

...
ωn

 .

Proof. λ1

...
λn

 (e1, . . . , en) =

λ1

...
λn

 (v1, . . . ,vn)Θ = Θ = Θ

ω1

...
ωn

 (e1, . . . , en).

Connection forms.

Definition 3.15. The connection form with respect to an orthonormal frame {ej} is a n×n-matrix
valued one form Ω on U defined by

Ω =


ω1
1 ω1

2 . . . ω1
n

ω2
1 ω2

2 . . . ω2
n

...
...

. . .
...

ωn
1 ωn

2 . . . ωn
n

 , ωk
j := 〈∇ej , ek〉 ∈ ∧1(U).

By definition, we have ∇ej =
∑n

k=1 ω
k
j ek, that is, ∇[e1, . . . , en] = [e1, . . . , en]Ω.

Lemma 3.16. ωk
j = −ωj

k.

Proof. ωk
j = 〈∇ej , ek〉 = d 〈ej , ek〉 − 〈ej ,∇ek〉 = −ωj

k.

Lemma 3.17. dωi =
∑n

l=1 ω
l ∧ ωi

l .

Proof.

dωi(ej , ek) = ejω
i(ek)− ekω

i(ej)− ωi([ej , ek]) = −ωi([ej , ek])

= −ωi(∇ej
ek −∇ek

ej) = −
〈
∇ej

ek −∇ek
ej , ei

〉
= −ωi

k(ej) + ωi
j(ek)

=

n∑
l=1

(
−ωi

l(ej)ω
l(ek) + ωi

l(ek)ω
l(ej)

)
=

n∑
l=1

ωl ∧ ωi
l(ej , ek).
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Exercises

3-1 Let {ej} and {vj} be two orthonormal frames on a domain U of a Riemannian n-manifold
M , which are related as (3.14). Show that the connection forms Ω of {ej} and Λ of {vj}
satisfy Ω = Θ−1ΛΘ +Θ−1dΘ.

3-2 Let R3
1 be the 3-dimensional Lorentz-Minkowski space and let H2(−1) the hyperbolic 2-space

(i.e. the hyperbolic plane) of constant curvature −1.

(1) Verify that
f(u, v) := (coshu, cos v sinhu, sin v sinhu)

gives a local coordinate system on U := H2(−1) \ {(1, 0, 0)}, and

e1 := (sinhu, cos v coshu, sin v coshu), e2 := (0,− sin v, cos v)

forms a orthonormal frame on U .
(2) Compute the connection form(s) with respect to the orthonormal frame {e1, e2}.
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4 Curvatre forms

4.1 Addendum to the previous section

Proposition 4.1 (The local expression of the Lie bracket). Let (U ;x1, . . . , xn) be a coordinate
neighborhood of an n-manifold M . Then the Lie bracket of two vector fields

X =

n∑
j=1

ξj
∂

∂xj
, Y =

n∑
j=1

ηj
∂

∂xj

is expressed as

[X,Y ] =

n∑
j=1

(
ξk

∂ηj

∂xk
− ηk

∂ξj

∂xk

)
∂

∂xj
.

Proof. For a smooth function f on U , it holds that
∂

∂xi

∂

∂xj
f =

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
=

∂

∂xj

∂

∂xi
f.

Hence [∂/∂xi, ∂/∂xj ] = 0. Then the conclusion follows from bilinearlity of [X,Y ] and the formula
[fX, Y ] = f [X,Y ]− (Y f)X, [X, fY ] = f [X,Y ] + (Xf)Y

for a smooth function f and vector fields X and Y .

Proposition 4.2 (A local expression of the connection forms). Let U be a domain of a Riemannian
n-manifold (M, g) and [e1, . . . , en] an orthonormal frame on U . Then the connection form ωj

i with
respect to the frame [ej ] is obtained as

ωj
i (ek) =

1

2

(
−〈[ei, ej ], ek〉+ 〈[ej , ek], ei〉+ 〈[ek, ei], ej〉

)
,

where 〈 , 〉 denotes the inner product induced from g.
Proof. By the definition of the Levi-Civita connection ∇,

ωj
i (ek) = 〈∇ek

ei, ej〉 = ek 〈ei, ej〉 − 〈ei,∇ek
ej〉 = −

〈
ei,∇ej

ek + [ek, ej ]
〉

= −ej 〈ei, ek〉+
〈
∇ej

ei, ek
〉
− 〈ei, [ej , ek]〉

= 〈∇ei
ej , ek〉+ 〈[ei, ej ], ek〉 − 〈ei, [ej , ek]〉

= ei 〈ej , ek〉 − 〈ej ,∇ei
ek〉+ 〈[ei, ej ], ek〉 − 〈ei, [ej , ek]〉

= −〈ej ,∇ek
ei〉 − 〈ej , [ei, ek]〉+ 〈[ei, ej ], ek〉 − 〈ei, [ej , ek]〉

= −ωj
i (ek) + 〈[ei, ej ], ek〉 − 〈[ej , ek], ei〉+ 〈[ek, ei], ej〉 .

4.2 Preliminaries

Integrability condition, a review. Let U be a domain of Rm with coordinate system (x1, . . . , xm),
and consider a system of differential equations

(4.1) ∂F

∂xl
= FΩl (l = 1, . . . ,m)

with initial condition
(4.2) F (P0) = F0 ∈ Mn(R), P0 = (x1

0, . . . , x
m
0 ) ∈ U,

where F is an unknown map into the space of n × n-real matrices Mn(R), and the coefficient
matrices Ωl (l = 1, . . . ,m) are Mn(R)-valued C∞-functions.
Lemma 4.3. If the initial condition F0 in (4.2) is non-singular, i.e., F0 ∈ GL(n,R)7, F satisfying

04. July, 2023. Revised: 11. July, 2023
7GL(n,R) denotes the set of n× n-regular matrices.
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(4.1) is a GL(n,R)-valued function, that is, F is invertible for each point on U .

Proof. For each P ∈ U , take a smooth path γ(t) := (x1(t), . . . , xm(t)) (0 5 t 5 1) with γ(0) = P0

and γ(1) = P. Then the matrix-valued function F̂ := F ◦ γ of one variable satisfies the ordinary
differential equation

dF̂

dt
= F̂ Ω̂, Ω̂ :=

m∑
l=1

Ωl ◦ γ
dxl

dt
.

Hence ϕ := det F̂ satisfies

dϕ

dt
=

d

dt
det F̂ = tr

( ˜̂
F
dF̂

dt

)
= tr(

˜̂
FF̂ Ω̂) = det F̂ tr Ω̂ = ϕω

where ˜̂F denotes the cofactor matrix of F̂ and ω := tr Ω̂. So

det F̂ (t) = ϕ(t) = ϕ0 exp

∫ t

0

ω(τ) dτ (ϕ0 := detF0),

proving the lemma.

As seen in the previous lectures the following integrability condition holds:

Lemma 4.4. If a C∞-map F : U → GL(n,R) satisfies (4.1), then it hold on U that

(4.3) ∂Ωl

∂xk
− ∂Ωk

∂xl
+ΩkΩl −ΩlΩk = O (1 5 k < l 5 m).

The integrability condition (4.3) guarantees existence of the solution of (4.1) as follows

Theorem 4.5. Let Ωl : U → Mm(R) (l = 1, . . . , n) be C∞-functions defined on a simply connected
domain U ⊂ Rn satisfying (4.3) Then for each P0 ∈ U and F0 ∈ Mm(R), there exists the unique
m×m-matrix valued function F : U → Mm(R) satisfying (4.1) and (4.2). Moreover,

• if F0 ∈ GL(m,R), F (P) ∈ GL(m,R) holds on U ,

• if F0 ∈ SO(m) and Ωl’s are skew-symmetric matrices, F (P) ∈ SO(m) holds on U .

Coordinate-free expressions Let Ωl : U → Mn(R) (l = 1, . . . ,m) be C∞-functions defined on
a domain U ⊂ Rm, and define n× n-matrix Ω of 1-forms as

(4.4) Ω =


ω1
1 ω1

2 . . . ω1
n

ω2
1 ω2

2 . . . ω2
n

...
...

. . .
...

ωn
1 ωn

2 . . . ωn
n

 :=

m∑
l=1

Ωl dx
l =


∑

ω1
l,1 dx

l
∑

ω1
l,2 dx

l . . .
∑

ω1
l,n dx

l∑
ω2
l,1 dx

l
∑

ω2
l,2 dx

l . . .
∑

ω2
l,n dx

l

...
...

. . .
...∑

ωn
l,1 dx

l
∑

ωn
l,2 dx

l . . .
∑

ωn
l,n dx

l

 ,

where Ωl = (ωi
l,j). Then Ω is considered as a Mn(R)-valued 1-form, and (4.1) is restated as

(4.5) dF = FΩ.

Lemma 4.6. Under the situation above, the integrability condition (4.3) is equivalent to

(4.6) dΩ +Ω ∧Ω = O, where Ω ∧Ω =

(
n∑

k=1

ωi
k ∧ ωk

j

)
i,j=1,...,n

.
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Proof. Assume F be a solution of (4.5) with F ∈ GL(n,R). Then

O = ddF = d(FΩ) = dF ∧Ω + F dΩ = F (Ω ∧Ω + dΩ).

Thus, by using differential forms, we can state the system of partial differential equations (4.1)
and its integrability condition (4.3) in coordinate-free form. The proof of Theorem 4.5 works not
only simply connected domain U ⊂ Rm but also simply connected m-manifold, and thus, we have

Theorem 4.7. Let Ω be an Mn(R)-valued 1-form on a simply connected m-manifold M satisfying
(4.6). Then for each P0 ∈ M and F0 ∈ Mn(R), there exists the unique n×n-matrix valued function
F : M → Mn(R) satisfying (4.5) with F (P) = F0. Moreover,

• if F0 ∈ GL(n,R), F (P) ∈ GL(n,R) holds on M ,

• if F0 ∈ SO(n) and Ω is skew-symmetric, F (P) ∈ SO(n) holds on M .

When n = 1, that is, Ω is a usual 1-form, Ω∧Ω always vanishes, and the integrability condition
(4.6) is simply dΩ = 0. Then we have the following Poncaré’s lemma8.

Theorem 4.8 (Poincaré’s lemma). If a differential 1-form ω defined on a simply connected and
connected m-manifold M is closed, that is, dω = 0 holds, then there exists a C∞-function f on M
such that df = ω. Such a function f is unique up to additive constants.

Proof. Since ω is closed, there exists a function F on M satisfying dF = Fω with initial condition
F (P0) = 1. By Lemma 4.3, F does not vanish on M , that is, F > 0. Hence f := logF is a smooth
function on M satisfying df = dF/F = Fω/F = ω. Take another function g on M satisfying
dg = ω, d(f − g) = 0 holds. Then connectedness of M infers that f − g is constant.

4.3 Curvature form

Let U be a domain of n-dimensional Riemannian manifold (M, g). We let Ω be the connection
form with respect to an orthonormal frame [e1, . . . , en] on U , as defined in Definition 3.15.

Definition 4.9. We define a skew-symmetric matrix-valued 2-form by K := dΩ +Ω ∧Ω and call
the curvature form with respect to the frame [e1, . . . , en].

Take an orthonormal frame [v1, . . . ,vn] on U and take a gauge transformation Θ : U → O(n):

[e1, . . . , en] = [v1, . . . ,vn]Θ.

Denoting the connection form and the curvature form with respect to [vj ] by Ω̃ and K̃. Then

Proposition 4.10. (1) Ω = Θ−1Ω̃Θ +Θ−1dΘ, (2) K = Θ−1K̃Θ.

Proof. Since

[e1, . . . , en]Ω = ∇[e1, . . . , en] = ∇([v1, . . . ,vn]Θ) = ∇[v1, . . . ,vn]Θ + [v1, . . . ,vn]dΘ

= [v1, . . . ,vn]Ω̃Θ + [v1, . . . ,vn]dΘ = [e1, . . . , en]Θ
−1(Ω̃Θ + dΘ),

the first assertion is obtained. Next, noticing d(Ω̃Θ) = (dΩ̃)Θ − Ω̃ ∧ dΘ, Ω̃Θ−1 ∧ ΘΩ̃ = Ω̃ ∧ Ω̃,
and so on, we have

dΩ +Ω ∧Ω = d(Θ−1Ω̃Θ +Θ−1dΘ) + (Θ−1Ω̃Θ +Θ−1dΘ) ∧ (Θ−1Ω̃Θ +Θ−1dΘ)

=−Θ−1dΘΘ−1Ω̃Θ +Θ−1dΩ̃Θ −Θ−1Ω̃ ∧ dΘ −Θ−1dΘΘ−1 ∧ dΘ

+Θ−1Ω̃Θ ∧Θ−1Ω̃Θ +Θ−1dΘ ∧Θ−1Ω̃Θ +Θ−1Ω̃Θ ∧Θ−1dΘ +Θ−1dΘ ∧Θ−1dΘ

=Θ−1(dΩ̃ + Ω̃ ∧ Ω̃)Θ,

proving (2).
8Theorem 2.6 in Advanced Topics in Geometry E (MTH.B501).
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The goal of this section is to prove the following

Theorem 4.11. Let U be a domain of a Riemannian n-manifold (M, g) and K the curvature form
with respect to an orthonormal frame [e1, . . . , en] on U . For a point P ∈ U , there exists a local
coordinate system (x1, . . . , xn) around P such that [∂/∂x1, . . . , ∂/∂xn] is an orthonormal frame if
and only if K vanishes on a neighborhood of P.

Remark 4.12. By (2) of Proposition 4.10, the condition K = 0 does not depend on choice of
orthonormal frames. A Riemannian manifold (M, g) said to be flat if K = 0 holds on M .

Proof of Theorem 4.11. First, we shall show the “only if” part: Let (x1, . . . , xn) be a coordinate
system such that [ej := ∂/∂xj ] is an orthonormal frame. Since

[ej , ek] =

[
∂

∂xj
,

∂

∂xk

]
= 0,

Proposition 4.2 yields that all components of the connection forms ωj
i vanish. Hene we have K = 0.

Conversely, assume K = 0 for an orthonormal frame [ej ]. Since the connection form Ω satisfies
dΩ + Ω ∧ Ω = O, there exists a matrix-valued function Θ : V → SO(n) satisfying dΘ = ΘΩ,
Θ(P) = id on a sufficiently small neighborhood V of P, because of Theorem 4.5. Take a new
orthonormal frame [v1, . . . ,vn] := [e1, . . . , en]Θ

−1. Then by (1) of Proposition 4.10, the connection
form Ω̃ = (ω̃j

i ) with respect to [vj ] vanishes identically. So by Lemma 3.17, dωi = 0 holds for
i = 1, . . . , n. Hence by the Poincaré Lemma (Theorem 4.8), there exists a smooth functions on a
neighborhood V of P. Such (x1, . . . , xn) is a desired coordinate system if V is sufficiently small.

Exercises

4-1 Consider a Riemannian metric

g = dr2 + {ϕ(r)}2 dθ2 on U := {(r, θ) ; 0 < r < r0,−π < θ < π},

where r0 ∈ (0,+∞] and ϕ is a positive smooth function defined on (0, r0) with

lim
r→+0

ϕ(r) = 0, lim
r→+0

ϕ′(r) = 1.

Find a function ϕ such that (U, g) is flat. (Hint: [∂/∂r, (1/ϕ)∂/∂θ)] is an orthonormal frame.)

4-2 Compute the curvature form of H2(−1) with respect to an orthonormal frame [e1, e2] as in
Exercise 3-2.
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5 The Sectional Curvature

5.1 Preliminaries

Exterior products of tangent vectors. Let V be an n-dimensional vector space (1 5 n < ∞)
and denote by V ∗ its dual. Then (V ∗)∗ can be naturally identified with V itself. In fact,

I : V 3 v 7−→ Iv ∈ (V ∗)∗ := {A : V ∗ → R; linear}, Iv(α) := α(v)

is a linear map with trivial kernel. Then I is an isomorphism because dim(V ∗)∗ = dimV .
We denote by ∧2V := ∧2(V ∗)∗ the set of skew-symmetric bilinear forms on V ∗. For vectors v,

w ∈ V , the exterior product of them is an element of ∧2V defined as

(v ∧w)(α, β) := α(v)β(w)− α(w)β(v) (α, β ∈ V ∗).

For a basis [e1, . . . , en] on V ,

(5.1) {ei ∧ ej ; 1 5 i < j 5 n}

is a basis of ∧2V . In particular dim∧2V = 1
2n(n− 1). When V is a vector space endowed with an

inner product 〈 , 〉 and [e1, . . . , en] is an orthonormal basis, there exists the unique inner product,
which is also denoted by 〈 , 〉, of ∧2V such that (5.1) is an orthonormal basis. This definition
of the inner product does not depend on choice of orthonormal bases of V . In fact, take another
orthonormal basis [v1, . . . ,vn] related with [ej ] by

[e1, . . . , en] = [v1, . . . ,vn]Θ Θ = (θji ) ∈ O(n).

Since ΘT = Θ−1, [v1, . . . ,vn] = [e1, . . . , en]Θ
T holds. Hence

vs ∧ vt =

(∑
i

θisei

)
∧

∑
j

θjtej

 =
∑
i,j

θsi θ
t
j(ei ∧ ej) =

∑
i<j

(
θsi θ

t
j − θsjθ

t
i)(ei ∧ ej

)
,

and so

〈vs ∧ vt,vu ∧ vv〉 =
∑

i<j,k<l

(θsi θ
t
j − θsjθ

t
i)(θ

u
kθ

v
l − θul θ

v
k) 〈ei ∧ ej , ek ∧ el〉

=
∑

i<j,k<l

(θsi θ
t
j − θsjθ

t
i)(θ

u
kθ

v
l − θul θ

v
k)δikδjl =

∑
i<j

(θsi θ
t
j − θsjθ

t
i)(θ

u
i θ

v
j − θuj θ

v
i )

=
∑
i<j

(θsi θ
t
jθ

u
i θ

v
j − θsjθ

t
iθ

u
i θ

v
j − θsi θ

t
jθ

u
j θ

v
i + θsjθ

t
iθ

u
j θ

v
i )

=
∑
i<j

θsi θ
t
jθ

u
i θ

v
j +

∑
i<j

θsjθ
t
iθ

u
i θ

v
j −

∑
i>j

θsjθ
t
iθ

u
i θ

v
j +

∑
i>j

θsi θ
t
jθ

u
i θ

v
j

=
∑
i 6=j

θsi θ
t
jθ

u
i θ

v
j −

∑
i6=j

θsjθ
t
iθ

u
i θ

v
j

=
∑
i,j

(θsi θ
t
jθ

u
i θ

v
j − θsjθ

t
iθ

u
i θ

v
j )−

∑
i

(θsi θ
t
iθ

u
i θ

v
i − θsi θ

t
iθ

u
i θ

v
i )

= δsuδtv − δtuδsv

because
∑

i θ
s
i θ

t
i = δst. So, if s < t and u < v, the second term of the right-hand side vanishes.

That is, {vs ∧ vt ; s < t} is an orthonormal basis as well as {ei ∧ ej ; i < j} is.

12. July, 2023. xRevised: 18. July, 2023
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Symmetric bilinear forms. Let V be a real vector space. A bilinear map q : V × V → R is
said to be symmetric if q(v,w) = q(w,v) for all v, w ∈ V .

Lemma 5.1. Two symmetric bilinear forms q and q′ coincide with each other if and only if
q(v,v) = q′(v,v) hold for all v ∈ V .

Proof. By symmetricity, q(v,w) = 1
2 (q(v +w,v +w)− q(v,v)− q(w,w)) holds.

5.2 Sectional Curvature

Let U be a domain on a Riemannian n-manifold (M, g), and [e1, . . . , en] an orthonormal frame on
U . Denote by (ωj)j=1,...,n, Ω = (ωj

i )i,j=1,...,n and K = (κj
i )i=1,...,n := dΩ +Ω ∧Ω the dual frame,

the connection form and the curvature form with respect to the frame [ej ]. Then Lemma 3.17 and
Definition 4.9, we have

(5.2) dωj =
∑
l

ωl ∧ ωj
l , κj

i = dωj
i +

∑
l

ωj
l ∧ ωl

i.

Since Ω is a one form valued in the skew-symmetric matrices, so is K:

(5.3) ωj
i = −ωi

j , κj
i = −κi

j .

Proposition 5.2 (The first Bianchi identity). κi
j(ek, el) + κi

k(el, ej) + κi
l(ej , ek) = 0.

Proof. By (5.2) and (3.11),

0 = ddωi = d

(∑
s

ωs ∧ ωi
s

)
=
∑
s

(
dωs ∧ ωi

s − ωs ∧ ωi
s

)
=
∑
s

(∑
m

(ωm ∧ ωs
m) ∧ ωi

s − ωs ∧

(
κi
s −

∑
m

ωi
m ∧ dωm

s

))
=
∑
s,m

ωm ∧ ωs
m ∧ ωi

s +
∑
s,m

ωs ∧ ωi
m ∧ ωm

s −
∑
s

ωs ∧ κi
s

=
∑
s,m

ωm ∧ (ωs
m ∧ ωi

s + ωi
s ∧ ωs

m)−
∑
s

ωs ∧ κi
s = −

∑
s

ωs ∧ κi
s.

Hence

0 =
∑
s

(ωs ∧ κi
s)(ej , ek, el) =

∑
s

(
ωs(ej)κ

i
s(ek, el) + ωs(ek)κ

i
s(el, ej) + ωs(el)κ

i
s(ej , ek)

)
=
∑
s

(
δsjκ

i
s(ek, el) + δskκ

i
s(el, ej) + δsl κ

i
s(ej , ek)

)
= κi

j(ek, el) + κi
k(el, ej) + κi

l(ej , ek),

proving the assertion.

Corollary 5.3. κi
j(ek, el) = κk

l (ei, ej).

Proof. By Proposition 5.2,

κi
j(ek, el) + κi

k(el, ej) + κi
l(ej , ek) = 0

κj
k(ei, el) + κj

i (el, ek) + κj
l (ek, ei) = 0

κk
i (ej , el) + κk

j (el, ei) + κk
l (ei, ej) = 0.

Summing up these and noticing κj
i = −κi

j , we have the conclusion.
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A quadratic form induced from the curvature form. We fix a point p ∈ U . Under the
notation above, we can define a bilinear map

(5.4) K(ξ,η) :=
∑

i<j,k<l

κj
i (ek, el)ξ

klηij , ξ =
∑
k<l

ξklek ∧ el, η =
∑
i<j

ηijei ∧ ej

on ∧2TpM , where ej , κj
i…are considered tangent vectors, 2-forms at the fixed point p. In fact, one

can show that the definition (5.4) is independent of choice of orthonormal frames. As a immediate
conclusion of Corollary 5.3, we have

Lemma 5.4. K is symmetric.

Hence, taking Lemma 5.1 into an account, we define the sectional curvature as follows:

Definition 5.5. Let Πp ⊂ TpM be a 2-dimensional linear subspace in TpM . The sectional curva-
ture of (M, g) with respect to the plane Πp is a number

K(Πp) := K(v ∧w,v ∧w),

where {v,w} is an orthonormal basis of Πp

Remark 5.6. For (not necessarily orthonormal) basis {x,y} of Πp, the sectional curvature is ex-
pressed as

K(Πp) =
K(x ∧ y,x ∧ y)

〈x ∧ y,x ∧ y〉
,

where 〈 , 〉 of the right-hand side is the inner product of ∧2TpM induced from the Riemannian
metric.
Remark 5.7. The sectional curvature is a scalar corresponding to a 2-plane in the tangent space
TpM . Hence it can be considered as a function of 2-Grassmannian bundle induced from the tangent
bundle TM .

5.3 Curvature Tensor

Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita connection. Define a trilinear map
(5.5)
R : X(M)× X(M)× X(M) 3 (X,Y, Z) 7→ R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z ∈ X(M).

By the properties Lemma 3.6 of the connection and the property (3.4) of the Lie bracket, the
following Lemma is obvious.

Lemma 5.8. For any function f ∈ F(M) and vector fields X, Y , Z ∈ X(M),

R(fX, Y )Z = R(X, fY )Z = R(X,Y )(fZ) = fR(X,Y )Z

holds.

Corollary 5.9. Assume the vector fields X, Y , Z and X̃, Ỹ , Z̃ ∈ X(M) satisfy Xp = X̃p, Yp = Ỹp

and Zp = Z̃p for a point p ∈ M . Then(
R(X,Y )Z

)
p
=
(
R(X̃, Ỹ )Z̃

)
p
.

In other words, R in (5.5) induces a trilinear map

Rp : TpM × TpM × TpM → TpM.
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Definition 5.10. A trilinear map R(X,Y )Z is called the curvature tensor of (M, g). In addition,
a quadrilinear map

R(X,Y, Z, T ) = 〈R(X,Y )Z, T 〉 : X(M)4 → F(M)

is also called the curvature tensor. In fact, R ∈ Γ (T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ T ∗M), that is R is
(0, 4)-tensor field, because R induces a quadrilinear map

R : (TpM)4 → R

for each p ∈ M .

Lemma 5.11. Let [e1, . . . , en] be an orthonormal frame on a domain U ⊂ M , and K = (κj
i ) the

curvature form with respect to the frame. Then it holds that

κj
i (X,Y ) = R(X,Y, ei, ej)

for each (i, j).

So by (5.3), Proposition 5.2, Corollary 5.3 yield

Proposition 5.12. • R(X,Y, Z, T ) = −R(Y,X,Z, T ) = −R(X,Y, T, Z),

• R(X,Y, Z, T ) +R(Y, Z,X, T ) +R(Z,X, Y, T ) = 0,

• R(X,Y, Z, T ) = R(Z, T,X, Y ).

Moreover, the sectional curvature K(Πp) in Definition 5.5 is computed by

(5.6) K(Πp) =
R(x,y,y,x)

〈x,x〉 〈y,y〉 − 〈x,y〉2
.

Exercises

5-1 Consider a Riemannian metric

g = dr2 + {ϕ(r)}2 dθ2 on U := {(r, θ) ; 0 < r < r0,−π < θ < π},

where r0 ∈ (0,+∞] and ϕ is a positive smooth function defined on (0, r0) with

lim
r→+0

ϕ(r) = 0, lim
r→+0

ϕ(r)

r
= 1.

Classify the function ϕ so that g is of constant sectional curvature.

5-2 Let M ⊂ Rn+1 be an embedded submanifold endowed with the Riemannian metric induced
from the canonical Euclidean metric of Rn+1. Then the position vector x(p) of p ∈ M induces
a smooth map

x : M 3 p 7−→ x(p) ∈ Rn+1,

which is an (n+1)-tuple of C∞-functions. Let [e1, . . . , en] be an orthonormal frame defined
on a domain U ⊂ M . Since TpM ⊂ Rn+1, we can consider that ej is a smooth map from
U → Rn+1. Take a dual basis (ωj) to [ej ]. Prove that

dx =

n∑
j=1

ejω
j

holds on U . Here, we regard that dx is an (n + 1)-tuple of differential forms and ej is an
Rn+1-valued function for each j.
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6 Space forms

6.1 Constant sectional curvature

Let (M, g) be a Riemannian n-manifold, and let

Gr2(TM) := ∪p Gr2(TpM),

Gr2(TpM) := 2-Grassmannian of TpM = {Πp ⊂ TpM ; 2-dimensional subspace}.

The sectional curvature defined in Definition 5.5 is a map K : Gr2(TM) → R such that

K(Πp) := K(v ∧w,v ∧w),

where {v,w} is the orthonormal basis of Πp.
Fix a point p, and take an orthornormal frame [e1, . . . , en] defined on a neighborhood U of p.

Denote by (ωj), Ω = (ωj
i ) and K = (κj

i ) the dual frame, the connection form and the curvature
form with respect to the frame [ej ], respectively.

Theorem 6.1. Assume there exists a real number k such that K(Πp) = k for all 2-dimensional
subspace Πp ∈ TpM for a fixed p. Then the curvature form is expressed as

κi
j = kωi ∧ ωj .

Conversely, the curvature form is written as above, the sectional curvature at p is constant k.

Proof. By the assumption, k = K(Span{ei, ej}) = K(ei ∧ ej , ei ∧ ej) = κi
j(ei, ej). Let

v := cos θei + sin θej , w := cosϕel + sinϕem

where {i, j} 6= {l,m}, and set Πθ,ϕ := Span{v,w} ⊂ TpM . Then by biliniearity of the ∧-product
on TpM , it holds that

v ∧w = cos θ cosϕei ∧ el + cos θ sinϕei ∧ em + sin θ cosϕej ∧ el + sin θ sinϕej ∧ em.

Since {v,w} is an orthonormal basis of Πθ,ϕ, biliniearity and symmetricity of K implies

k =K(Πθ,ϕ) = K(v ∧w,v ∧w)(6.1)
=cos2 θ cos2 ϕK(ei ∧ el, ei ∧ el) + cos2 θ sin2 ϕK(ei ∧ em, ei ∧ em)

+ sin2 θ cos2 ϕK(ej ∧ el, ej ∧ el) + sin2 θ sin2 ϕK(ej ∧ em, ej ∧ em)

+ 2 cos2 θ cosϕ sinϕK(ei ∧ el, ei ∧ em) + 2 cos θ sin θ cos2 ϕK(ei ∧ el, ej ∧ el)

+ 2 cos θ sin θ cosϕ sinϕ(K(ei ∧ el, ej ∧ em) +K(ei ∧ em, ej ∧ el))

+ 2 cos θ sin θ sin2 ϕK(ei ∧ em, ej ∧ em) + 2 sin2 θ cosϕ sinϕK(ej ∧ el, ej ∧ em)

=k + 2
(
cos2 θ cosϕ sinϕK(ei ∧ el, ei ∧ em) + cos θ sin θ cos2 ϕK(ei ∧ el, ej ∧ el)

+ cos θ sin θ cosϕ sinϕ(K(ei ∧ el, ej ∧ em) +K(ei ∧ em, ej ∧ el))

+ cos θ sin θ sin2 ϕK(ei ∧ em, ej ∧ em) + sin2 θ cosϕ sinϕK(ej ∧ el, ej ∧ em)
)
.

So, by letting θ = 0, we have

(6.2) K(ei ∧ el, ei ∧ em) = 0.

Similarly, letting θ = π/2, ϕ = 0 and ϕ = π/2, we have K(ej ∧el, ej ∧em) = K(ei ∧el, ej ∧el) =
K(ei ∧ em, ej ∧ em) = 0. Hence the equality (6.1) implies

K(ei ∧ el, ej ∧ em) +K(ei ∧ em, ej ∧ el) = 0.

25. July, 2022.
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By definition (5.4), this is equivalent to

κm
j (ei, el) + κl

j(ei, em) = −(κj
m(ei, el) + κj

l (ei, em)).

Then by Proposition 5.2, we have

0 = κj
m(ei, el) + κj

l (ei, em) = κj
m(ei, el)− κj

i (em, el)− κj
m(el, ei) = 2κj

m(ei, el)− κj
i (em, el).

Exchanging the roles of i and m, it holds that 2κj
i (em, el)− κj

m(ei, el) = 0. So we have

(6.3) κj
i (em, el) = 0 (if {i, j} 6= {m, l}).

On the other hand, (6.2) means that κj
i (ei, el) = κj

i (ej , el) = 0 when l 6= i, j. Summing up, we
have

κj
i (ek, el) =

{
k (i, j) = (k, l)

0 otherwise,

proving the theorem.

We now consider the case that the assumption of Theorem 6.1 holds for each p ∈ M .

Theorem 6.2. Assume that for each p, there exists a real number k(p) such that K(Πp) = k(p)
for any Πp ∈ Gr2(TpM). Then the function k : M 3 p → k(p) ∈ R is constant provided that M is
connected.

Proof. By taking the exterior derivative of κj
i = dωj

i +
∑

s ω
j
s ∧ ωs

i , it holds that

dκj
i = d(dωj

i ) +
∑
s

ωj
s ∧ dωs

i −
∑
s

dωj
s ∧ ωs

i

=
∑
s

(
κj
s −

∑
t

ωj
t ∧ ωt

s

)
∧ ωs

i −
∑
s

ωj
s ∧

(
κs
i −

∑
t

ωs
t ∧ ωt

i

)
,

and hence we have the identity

(6.4) dκj
i =

∑
s

(
κj
s ∧ ωs

i − ωj
s ∧ κs

i

)
,

which is known as the second Bianchi identity. By our assumption, Theorem 6.1 implies that
κj
i = kωi ∧ ωj . Then by Lemma 3.17,

dκj
i = d(kωi) ∧ ωj − kωi ∧ dωj = dk ∧ ωi ∧ ωj + kdωi ∧ ωj − kωi ∧ dωj

= dk ∧ ωi ∧ ωj +
∑
s

kωs ∧ ωi
s ∧ ωj −

∑
s

kωi ∧ ωs ∧ ωj
s = dk ∧ ωi ∧ ωj + dκj

i

holds for each i and j. Thus, dk ∧ ωi ∧ ωj = 0 for all i and j, which implies dk = 0. This equality
is independent of choice of orthonormal frames. Since M is connected, k is constant.

6.2 Space forms

Let (M, g) be a Riemannian n-manifold. A path γ : [0,+∞) → M is said to be a divergence path
if for any compact subset K ∈ M , there exists t0 ∈ (0,+∞) such that γ([t0,+∞)) ⊂ M \ K. If
any divergent path has infinite length, (M, g) is said to be complete.9 In particular, a compact
Riemannian manifold without boundary is automatically complete.

9Usually, completeness is defined in terms of geodesics: A Riemannian manifold (M, g) is complete if any geodesics
are defined on entire R. The definition here is one of the equivalent conditions of completeness, expressed in the
Hopf-Rinow theorem. cf. MTH.B505.
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Definition 6.3. An n-dimensional space form is a complete Riemannian n-manifold of constant
sectional curvature.

Example 6.4. The Euclidean n-space is a space form of constant sectional curvature 0. In fact,
let (x1, . . . , xn) be the canonical Cartesian coordinate system and set ej = ∂/∂xj . Then [ej ] is
an orthornormal frame defined on the entire Rn, and Propositions 4.1 and 4.2 implies that the
connection form ωi

j = 0. Hence the curvature forms vanish, and then the sectional curvature is
identically zero.

So it is sufficient to show completeness. Let γ : [0,+∞) → Rn be a divergent path. Then for
each r > 0, there exists t0 > 0 such that |γ(t)| > r holds on [t0,+∞), equivalently, |γ(t)| → +∞
as t → +∞. So the length L of the curve γ is

L = lim
t→+∞

∫ t

0

|γ̇(τ)| dτ = lim
t→+∞

∣∣∣∣∫ t

0

γ̇(τ) dτ

∣∣∣∣ = lim
t→+∞

|γ(t)− γ(0)| = lim
t→+∞

|γ(t)| − |γ(0)| = +∞.

Here, we used the triangle inequality of integrals for vector-valued functions10.

6.3 The Hyperbolic spaces

Let Hn(−c2) be the hyperbolic n-space defined, where c is a non-zero constant:

Hn(−c2) :=

{
x = (x0, . . . , xn) ∈ Rn+1

1

∣∣∣∣ 〈x,x〉L = − 1

c2
, cx0 > 0

}
,

where (Rn+1
1 , 〈 , 〉L) be the Lorentz-Minkowski (n+1)-space. The tangent space TxH

n(−c2) is the
orthogonal complement x⊥ of x, and the restriction gH of the inner product 〈 , 〉L to TxH

n(−c2)
is positive definite. Thus, (Hn(−c2), gH) is a Riemannian manifold, called the hyperbolic n-space.

Theorem 6.5. The hyperbolic space (Hn(−c2), gH) is of constant sectional curvature −c2.

Proof. Notice that Hn(−c2) can be expressed as a graph x0 = 1
c

√
1 + c2 ((x1)2 + · · ·+ (xn)2)

defined on the (x1, . . . , xn)-hyperplane, that is, it is covered by single chart. Then there exists
a orthonormal frame field [e1, . . . , en] defined on entire Hn(−c2). Denote by (ωi), Ω = (ωj

i )

and K = (κj
i ) the dual frame, the connection form and the curvature form with respect to [ej ],

respectively.
Regarding TxH

n(−c2) as a linear subspace in Rn+1
1 , we can consider ej as a vector-valued

function. In addition the position vector x ∈ Hn(−c2) can be also regarded as a vector-valued
function. Since TxH

n(−c2) = x⊥,

(6.5) F := (e0, e1, . . . , en) : H
n(−c2) → Mn+1(R) e0 = cx

gives a pseudo orthornormal frame along Hn(−c2), that is, FTY F = Y (Y := diag(−1, 1, . . . , 1))
holds.

As seen in Exercise 5-2, it holds that

(6.6) de0 = c dx = c

n∑
j=1

ωjej .

On the other hand, for each j = 1, . . . , n, decompose the vector-valued one form dej as

dej = hje0 +
∑
s

αs
jes,

10See, for example, Theorem A.1.4 in [UY17] for n = 2. The idea of the proof works for general n.
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where hj and αs
j are one forms on Hn(−c2). Here,

hj = −〈dej , e0〉L = −d 〈ej , e0〉L + 〈ej , de0〉L = cωj ,

and
αs
j = 〈dej , es〉L = d 〈ej , es〉L − 〈ej , des〉L = −αj

s.

Differentiating (6.6), it holds that

0 =
1

c
dde0 =

∑
j

(dωjej − ωj ∧ dej) =
∑
j,s

ωs ∧ ωj
sej −

∑
j,s

ωj ∧ αs
jes =

∑
j

∑
s

ωs ∧ (ωj
s − αj

s)ej

because ωj ∧ ωj = 0. Thus, we have
∑

s ω
s ∧ (ωj

s − αj
s) = 0, and then

0 =

(∑
s

ωs ∧ (ωj
s − αj

s)

)
(el, em) = (ωj

l (em)− αj
l (em))− (ωj

m(el)− αj
m(el)),

0 = (ωm
j (el)− αm

j (el))− (ωm
l (ej)− αm

l (ej)) = −(ωj
m(el)− αj

m(el))− (ωm
l (ej)− αm

l (ej)),

0 = (ωl
m(ej)− αl

m(ej))− (ωl
j(em)− αl

j(em)) = −(ωm
l (ej)− αm

l (ej)) + (ωj
l (em)− αj

l (em)),

which conclude that ωj
l = αj

l . Summing up, we have

(6.7) dej = cωje0 +
∑
s

ωs
jes.

Then the frame F in (6.5) satisfies

(6.8) dF = FΩ̃, where Ω̃ =

(
0 cωT

cω Ω

)
and ω := (ω1, . . . , ωn)T .

The integrability condition of (6.8) is

O = dΩ̃ + Ω̃ ∧ Ω̃ =

(
c2ωT ∧ ω c

(
dωT + ωT ∧Ω

)
c (dω +Ω ∧ ω) dΩ +Ω ∧Ω + c2ω ∧ ωT

)
.

The lower-right components of the identity above yields

κj
i + c2ωi ∧ ωj = 0.

Hence the sectional curvature of (Hn(−c2), gH) = −c2.

Remark 6.6. One can show the completeness of (Hn(−c2), gH) (cf. MTH.B505). Hence the hyper-
bolic space is a simply connected space form of constant negative sectional curvature.

6.4 Isometries

A C∞-map f : M → N between manifolds M and N induces a linear map

(df)p : TpM 3 X 7−→ (df)p(X) =
d

dt

∣∣∣∣
t=0

f ◦ γ(t) ∈ Tf(p)N,

where γ : (−ε, ε) → M is a smooth curve with γ(0) = p and γ̇(0) = X, called the differential of f .
Since p ∈ M is arbitrary, this induces a bundle homomorphism df : TM → TN .

Definition 6.7. A vector field on N along a smooth map f : M → N is a map X : M → TN
satisfying π ◦X = f , where π : TN → N is the canonical projection.
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Then for each vector field X ∈ X(M), df(X) is a vector field on N along f .

Definition 6.8. A C∞-map f : M → N between Riemannian manifolds (M, g) and (N,h) is called
a local isometry if dimM = dimN and f∗h = g hold, that is,

f∗h(X,Y ) := h(df(X), df(Y )) = g(X,Y )

holds for X, Y ∈ TpM and p ∈ M .

Lemma 6.9. A local isometry is an immersion.

Proof. Let [e1, . . . , en] be a (local) orthonormal frame of M , where n = dimM . Set vj := df(ej)
(j = 1, . . . , n) for a smooth map f : (M, g) → (N,h). If f is a local isometry, [v1(p), . . . ,vn(p)] is
an orthonormal system in Tf(p)N , because

h(vi,vj) = h(df(ei), df(ej)) = f∗h(ei, ej) = g(ei, ej).

Hence the differential (df)p is of rank n.

The proof of Lemma 6.9 suggests the following fact:

Corollary 6.10. A smooth map f : (M, g) → (N,h) is a local isometry if and only if for each
p ∈ M ,

[v1, . . . ,vn] := [df(e1), . . . , df(en)]

is an orthonormal frame for some orthonormal frame [ej ] on a neighborhood of p.

6.5 Local uniqueness of space forms

Theorem 6.11. Let U ⊂ Rn be a simply connected domain and g a Riemannian metric on U . If
the sectional curvature of (U, g) is constant k, there exists a local isometry f : U → Nn(k), where

Nn(k) =


Sn(k) (k > 0)

Rn (k = 0)

Hn(k) (k < 0).

Proof. Take an orthonormal frame [e1, . . . , en] on U , and let (ωj), Ω = (ωj
i ) and K = (κj

i ) be the
dual frame, the connection form, and the curvature form with respect to [ej ], respectively. Since
the sectional curvature is constant k, κj

i = kωi ∧ ωj holds for each (i, j), because of Theorem 6.1.
First, consider the case k = 0: In this case, K = dΩ +Ω ∧Ω = O, and then by Theorem 4.5,

there exists the unique matrix valued function F : U → SO(n) satisfying

dF = FΩ, F(p0) = id,

where p0 ∈ U is a fixed point. Decompose the matrix F into column vectors as F = [v1, . . . ,vn],
and define an Rn-valued one form

α :=

n∑
j=1

ωjvj .

Then

dα =

n∑
j=1

(
dωjvj − ωj ∧ dvj

)
=
∑
j,s

(
ωs ∧ ωj

s

)
vj −

∑
j,s

(
ωj ∧ ωs

j

)
vs = 0.
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Hence by the Poincaré lemma (Theorem 4.8), there exists a smooth map f : U → Rn satisfying
df = α. For such an f , it holds that

df(es) = α(es) =

n∑
j=1

ωj(es)vj = vs

for s = 1, . . . , n. Hence [df(e1), . . . , df(en)] = [v1, . . . ,vn] is an orthonormal frame, and then f is
a local isometry because Corollary 6.10.

Next, consider the case k = −c2 < 0. We set

Ω̃ :=

(
0 cωT

cω Ω

)
, where ω =

ω1

...
ωn


as in (6.8) in Section ??. Since κj

i = kωi ∧ ωj = −c2ωi ∧ ωj , dΩ̃ + Ω̃ ∧ Ω̃ = O holds as seen in
Section ??. Hence there exists an matrix valued function F : U → Mn+1(R) satisfying

(6.9) dF = FΩ̃, F(p0) = id,

where p0 ∈ U is a fixed point. Notice that

Ω̃TY + Y Ω̃ = O Y =


−1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


holds,

d(FY FT ) = FΩ̃Y FT + FY Ω̃TFT = F(Ω̃Y + Y Ω̃T )FT = O.

Hence, by the initial condition,

FY FT = Y, that is, (FY )−1 = FTY.

Thus, we have

(6.10) FTY F = (FY )−1F = Y F−1F = Y.

Decompose F = [v0,v1, . . . ,vn]. Then (6.10) is equivalent to

(6.11) −〈v0,v0〉L = 〈v1,v1〉L = · · · = 〈vn,vn〉L = 1, 〈vi,vj〉 = 0 (if i 6= j).

In particular, the 0-th component of v0 never vanishes, since

−1 = 〈v0,v0〉L = −(v00)
2 + (v10)

2 + · · ·+ (vn0 )
2 v0 = (v00 , v

1
0 , . . . , v

n
0 )

T .

Moreover, by the initial condition v0(p0) = (1, 0, . . . , 0)T ,

(6.12) v00 > 0

holds.
Set f := 1

cv0. Then f : U → Rn+1
1 is the desired map. In fact, by (6.11) and (6.12),

f ∈ Hn(−c2) =

{
x = (x0, . . . , xn)T ∈ Rn+1

1

∣∣∣∣ 〈x,x〉 = − 1

c2
, cx0 > 0

}
,

and

df(ej) =
1

c
dv0(ej) =

n∑
s=1

ωs(ej)vs = vj .

Hence [vj ] = [ej ] is an orthonormal frame because (6.11).
The case k > 0 is left as an exercise.
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Exercises

6-1 Prove that the sphere
S3(1) =

{
x ∈ R4 ; 〈x,x〉 = 1

}
of radius 1 in the Euclidean 4-space is of constant sectional curvature 1.

6-2 Prove Theorem 6.11 for k = 1 and n = 2, assuming Exercise 6-1.
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Glossary

1-form 1-形式，1次微分形式, 14

affirm connection アファイン接続, 16
arc-length parameter 弧長径数, 7

bilinear 双線形, 15

Cauchy-Riemann equations コーシー・リーマン
方程式, 12

column vector 列ベクトル, 3
compatibility condition 適合条件, 9
conjugate 共役, 13
covariant tensor 共変テンソル, 14
covariant 共変, 14
curvature tensor 曲率テンソル, 26
curvature 曲率, 7

dual space 双対空間, 14

eigenvalue 固有値, 3
exterior derivative 外微分, 16
exterior product 外積, 23

flat 平坦, 22
form (微分) 形式, 15
Frenet frame フルネ枠, 7

gauge transformation ゲージ変換, 17
general linear group (GL(n,R)) 一般線形群, 3

harmonic function 調和関数, 12
holomorphic 正則（複素関数が）, 12

initial value problem 初期値問題, 1
integrability condition 可積分条件, 9

Laplacian ラプラシアン, 12
Levi-Suavity connection レビ・チビタ接続, 16
Lie algebra リー代数, 14
Lie bracket リー括弧積, 14
linear connection 線形接続, 16
linear function 1次関数, 2
linear ordinary differential equation 線形常微分

方程式, 2

ordinary differential equation 常微分方程式, 1
orthogonal group (O(n)) 直交群, 4
orthonormal frame 直交枠, 16

partial differential equation 偏微分方程式, 9

regular curve 正則曲線, 7
regular matrix 正則行列, 3
Riemannian connection リーマン接続, 16

second Bianchi identity 第二ビアンキ恒等式, 28
sectional curvature 断面曲率, 25
simply connected 単連結, 10, 20
skew-symmeetric matrix 交代行列，歪対称行列,

4
skew-symmetric 交代的，反対称, 15
solution 解, 1
space curve 空間曲線, 7
space form 空間形, 29
special linear group (SL(n,R)) 特殊線形群, 4
special orthogonal group (SO(n)) 特殊直交群, 4

tensor テンソル, 14
torsion 捩率, 7
trilinear 三重線形, 15

unknown function 未知関数, 1
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