1 Linear Ordinary Differential Equations

The fundamental theorem for ordinary differential equations. Consider a function

$$
\begin{equation*}
\boldsymbol{f}: I \times U \ni(t, \boldsymbol{x}) \longmapsto \boldsymbol{f}(t, \boldsymbol{x}) \in \mathbb{R}^{m} \tag{1.1}
\end{equation*}
$$

of class C^{1}, where $I \subset \mathbb{R}$ is an interval and $U \subset \mathbb{R}^{m}$ is a domain in the Euclidean space \mathbb{R}^{m}. For any fixed $t_{0} \in I$ and $\boldsymbol{x}_{0} \in U$, the condition

$$
\begin{equation*}
\frac{d}{d t} \boldsymbol{x}(t)=\boldsymbol{f}(t, \boldsymbol{x}(t)), \quad \boldsymbol{x}\left(t_{0}\right)=\boldsymbol{x}_{0} \tag{1.2}
\end{equation*}
$$

of an \mathbb{R}^{m}-valued function $t \mapsto \boldsymbol{x}(t)$ is called the initial value problem of ordinary differential equation for unknown function $\boldsymbol{x}(t)$. A function $\boldsymbol{x}: I \rightarrow U$ satisfying (1.2) is called a solution of the initial value problem.
Fact 1.1 (The existence theorem for ODE's). Let $\boldsymbol{f}: I \times U \rightarrow \mathbb{R}^{m}$ be a C^{1}-function as in (1.1). Then, for any $\boldsymbol{x}_{0} \in U$ and $t_{0} \in I$, there exists a positive number ε and a C^{1}-function $\boldsymbol{x}: I \cap\left(t_{0}-\right.$ $\left.\varepsilon, t_{0}+\varepsilon\right) \rightarrow U$ satisfying (1.2).

Consider two solutions $\boldsymbol{x}_{j}: J_{j} \rightarrow U(j=1,2)$ of (1.2) defined on subintervals $J_{j} \subset I$ containing t_{0}. Then the function \boldsymbol{x}_{2} is said to be an extension of \boldsymbol{x}_{1} if $J_{1} \subset J_{2}$ and $\left.\boldsymbol{x}_{2}\right|_{J_{1}}=\boldsymbol{x}_{1}$. A solution \boldsymbol{x} of (1.2) is said to be maximal if there are no non-trivial extension of it.
Fact 1.2 (The uniqueness for ODE's). The maximal solution of (1.2) is unique.
Fact 1.3 (Smoothness of the solutions). If $\boldsymbol{f}: I \times U \rightarrow \mathbb{R}^{m}$ is of class $C^{r}(r=1, \ldots, \infty)$, the solution of (1.2) is of class C^{r+1}. Here, $\infty+1=\infty$, as a convention.

Let $V \subset \mathbb{R}^{k}$ be another domain of \mathbb{R}^{k} and consider a C^{∞}-function

$$
\begin{equation*}
\boldsymbol{h}: I \times U \times V \ni(t, \boldsymbol{x} ; \boldsymbol{\alpha}) \mapsto \boldsymbol{h}(t, \boldsymbol{x} ; \boldsymbol{\alpha}) \in \mathbb{R}^{m} \tag{1.3}
\end{equation*}
$$

For fixed $t_{0} \in I$, we denote by $\boldsymbol{x}\left(t ; \boldsymbol{x}_{0}, \boldsymbol{\alpha}\right)$ the (unique, maximal) solution of (1.2) for $\boldsymbol{f}(t, \boldsymbol{x})=$ $\boldsymbol{h}(t, \boldsymbol{x} ; \boldsymbol{\alpha})$. Then
Fact 1.4. The map $\left(t, \boldsymbol{x}_{0} ; \boldsymbol{\alpha}\right) \mapsto \boldsymbol{x}\left(t ; \boldsymbol{x}_{0}, \boldsymbol{\alpha}\right)$ is of class C^{∞}.
Example 1.5. (1) Let $m=1, I=\mathbb{R}, U=\mathbb{R}$ and $f(t, x)=\lambda x$, where λ is a constant. Then $x(t)=x_{0} \exp (\lambda t)$ defined on \mathbb{R} is the maximal solution to

$$
\frac{d}{d t} x(t)=f(t, x(t))=\lambda x(t), \quad x(0)=x_{0}
$$

(2) Let $m=2, I=\mathbb{R}, U=\mathbb{R}^{2}$ and $\boldsymbol{f}(t ;(x, y))=\left(y,-\omega^{2} x\right)$, where ω is a constant. Then

$$
\binom{x(t)}{y(t)}=\binom{x_{0} \cos \omega t+\frac{y_{0}}{\omega} \sin \omega t}{-x_{0} \omega \sin \omega t+y_{0} \cos \omega t}
$$

is the unique solution of

$$
\frac{d}{d t}\binom{x(t)}{y(t)}=\binom{y(t)}{-\omega^{2} x(t)}, \quad\binom{x(0)}{y(0)}=\binom{x_{0}}{y_{0}}
$$

defined on \mathbb{R}. This differential equation can be considered a single equation

$$
\frac{d^{2}}{d t^{2}} x(t)=-\omega^{2} x(t), \quad x(0)=x_{0}, \quad \frac{d x}{d t}(0)=y_{0}
$$

of order 2 .
(3) Let $m=1, I=\mathbb{R}, U=\mathbb{R}$ and $f(t, x)=1+x^{2}$. Then $x(t)=\tan t$ defined on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is the unique maximal solution of the initial value problem

$$
\frac{d x}{d t}=1+x^{2}, \quad x(0)=0
$$

13. June, 2023. Revised: 20. June, 2023

Linear Ordinary Differential Equations. The ordinary differential equation (1.2) is said to be linear if the function (1.1) is a linear function in \boldsymbol{x}, that is, a linear differential equation is in a form

$$
\frac{d}{d t} \boldsymbol{x}(t)=A(t) \boldsymbol{x}(t)+\boldsymbol{b}(t)
$$

where $A(t)$ and $\boldsymbol{b}(t)$ are $m \times m$-matrix-valued and \mathbb{R}^{m}-valued functions in t.
For the sake of later use, we consider, in this lecture, the special form of linear differential equation for matrix-valued unknown functions as follows: Let $\mathrm{M}_{n}(\mathbb{R})$ be the set of $n \times n$-matrices with real components, and take functions

$$
\Omega: I \longrightarrow \mathrm{M}_{n}(\mathbb{R}), \quad \text { and } B: I \longrightarrow \mathrm{M}_{n}(\mathbb{R})
$$

where $I \subset \mathbb{R}$ is an interval. Identifying $\mathrm{M}_{n}(\mathbb{R})$ with $\mathbb{R}^{n^{2}}$, we assume Ω and B are continuous functions (with respect to the topology of $\mathbb{R}^{n^{2}}=\mathrm{M}_{n}(\mathbb{R})$). Then we can consider the linear ordinary differential equation for matrix-valued unknown $X(t)$ as

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t)+B(t), \quad X\left(t_{0}\right)=X_{0} \tag{1.4}
\end{equation*}
$$

where X_{0} is given constant matrix.
Then, the fundamental theorem of linear ordinary equation states that the maximal solution of (1.4) is defined on whole I. To prove this, we prepare some materials related to matrix-valued functions.

Preliminaries: Matrix Norms. Denote by $\mathrm{M}_{n}(\mathbb{R})$ the set of $n \times n$-matrices with real components, which can be identified the vector space $\mathbb{R}^{n^{2}}$. In particular, the Euclidean norm of $\mathbb{R}^{n^{2}}$ induces a norm

$$
\begin{equation*}
|X|_{\mathrm{E}}=\sqrt{\operatorname{tr}\left(X^{T} X\right)}=\sqrt{\sum_{i, j=1}^{n} x_{i j}^{2}} \tag{1.5}
\end{equation*}
$$

on $\mathrm{M}_{n}(\mathbb{R})$. On the other hand, we let

$$
\begin{equation*}
|X|_{\mathrm{M}}:=\sup \left\{\frac{|X \boldsymbol{v}|}{|\boldsymbol{v}|} ; \boldsymbol{v} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}\right\} \tag{1.6}
\end{equation*}
$$

where $|\cdot|$ denotes the Euclidean norm of \mathbb{R}^{n}.
Lemma 1.6. (1) The map $X \mapsto|X|_{\mathrm{M}}$ is a norm of $\mathrm{M}_{n}(\mathbb{R})$.
(2) For $X, Y \in \mathrm{M}_{n}(\mathbb{R})$, it holds that $|X Y|_{\mathrm{M}} \leqq|X|_{\mathrm{M}}|Y|_{\mathrm{M}}$.
(3) Let $\lambda=\lambda(X)$ be the maximum eigenvalue of semi-positive definite symmetric matrix $X^{T} X$. Then $|X|_{\mathrm{M}}=\sqrt{\lambda}$ holds.
(4) $(1 / \sqrt{n})|X|_{\mathrm{E}} \leqq|X|_{\mathrm{M}} \leqq|X|_{\mathrm{E}}$.
(5) The map $|\cdot|_{\mathrm{M}}: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ is continuous with respect to the Euclidean norm.

Proof. Since $|X \boldsymbol{v}| /|\boldsymbol{v}|$ is invariant under scalar multiplications to \boldsymbol{v}, we have $|X|_{\mathrm{M}}=\sup \{|X \boldsymbol{v}| ; \boldsymbol{v} \in$ $\left.S^{n-1}\right\}$, where S^{n-1} is the unit sphere in \mathbb{R}^{n}. Since $S^{n-1} \ni \boldsymbol{x} \mapsto|A \boldsymbol{x}| \in \mathbb{R}$ is a continuous function defined on a compact space, it takes the maximum. Thus, the right-hand side of (1.6) is welldefined. It is easy to verify that $|\cdot|_{\mathrm{M}}$ satisfies the axiom of the norm ${ }^{1}$.

[^0]Since $A:=X^{T} X$ is positive semi-definite, the eigenvalues $\lambda_{j}(j=1, \ldots, n)$ are non-negative real numbers. In particular, there exists an orthonormal basis [\boldsymbol{a}_{j}] of \mathbb{R}^{n} satisfying $A \boldsymbol{a}_{j}=\lambda_{j} \boldsymbol{a}_{j}$ $(j=1, \ldots, n)$. Let λ be the maximum eigenvalue of A, and write $\boldsymbol{v}=v_{1} \boldsymbol{a}_{1}+\cdots+v_{n} \boldsymbol{a}_{n}$. Then it holds that

$$
\langle X \boldsymbol{v}, X \boldsymbol{v}\rangle=\lambda_{1} v_{1}^{2}+\cdots+\lambda_{n} v_{n}^{2} \leqq \lambda\langle\boldsymbol{v}, \boldsymbol{v}\rangle,
$$

where \langle,$\rangle is the Euclidean inner product of \mathbb{R}^{n}$. The equality of this inequality holds if and only if \boldsymbol{v} is the λ-eigenvector, proving (3). Noticing the norm (1.5) is invariant under conjugations $X \mapsto$ $P^{T} X P(P \in \mathrm{O}(n))$, we obtain $|X|_{\mathrm{E}}=\sqrt{\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}}$ by diagonalizing $X^{T} X$ by an orthogonal matrix P. Then we obtain (4). Hence two norms $|\cdot|_{\mathrm{E}}$ and $|\cdot|_{\mathrm{M}}$ induce the same topology as $\mathrm{M}_{n}(\mathbb{R})$. In particular, we have (5).

Preliminaries: Matrix-valued Functions.

Lemma 1.7. Let X and Y be C^{∞}-maps defined on a domain $U \subset \mathbb{R}^{m}$ into $\mathrm{M}_{n}(\mathbb{R})$. Then
(1) $\frac{\partial}{\partial u_{j}}(X Y)=\frac{\partial X}{\partial u_{j}} Y+X \frac{\partial Y}{\partial u_{j}}$,
(2) $\frac{\partial}{\partial u_{j}} \operatorname{det} X=\operatorname{tr}\left(\widetilde{X} \frac{\partial X}{\partial u_{j}}\right)$, and
(3) $\frac{\partial}{\partial u_{j}} X^{-1}=-X^{-1} \frac{\partial X}{\partial u_{j}} X^{-1}$,
where \widetilde{X} is the cofactor matrix of X, and we assume in (3) that X is a regular matrix.
Proof. The formula (1) holds because the definition of matrix multiplication and the Leibnitz rule, Denoting ${ }^{\prime}=\partial / \partial u_{j}$,

$$
O=(\mathrm{id})^{\prime}=\left(X^{-1} X\right)^{\prime}=\left(X^{-1}\right) X^{\prime}+\left(X^{-1}\right)^{\prime} X
$$

implies (3), where id is the identity matrix.
Decompose the matrix X into column vectors as $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$. Since the determinant is multi-linear form for n-tuple of column vectors, it holds that

$$
(\operatorname{det} X)^{\prime}=\operatorname{det}\left(\boldsymbol{x}_{1}^{\prime}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)+\operatorname{det}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}^{\prime}, \ldots, \boldsymbol{x}_{n}\right)+\cdots+\operatorname{det}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}^{\prime}\right)
$$

Then by cofactor expansion of the right-hand side, we obtain (2).
Proposition 1.8. Assume two C^{∞} matrix-valued functions $X(t)$ and $\Omega(t)$ satisfy

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0} \tag{1.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{det} X(t)=\left(\operatorname{det} X_{0}\right) \exp \int_{t_{0}}^{t} \operatorname{tr} \Omega(\tau) d \tau \tag{1.8}
\end{equation*}
$$

holds. In particular, if $X_{0} \in \mathrm{GL}(n, \mathbb{R}),{ }^{2}$ then $X(t) \in \mathrm{GL}(n, \mathbb{R})$ for all t.
Proof. By (2) of Lemma 1.7, we have

$$
\begin{aligned}
\frac{d}{d t} \operatorname{det} X(t) & =\operatorname{tr}\left(\widetilde{X}(t) \frac{d X(t)}{d t}\right)=\operatorname{tr}(\widetilde{X}(t) X(t) \Omega(t)) \\
& =\operatorname{tr}(\operatorname{det} X(t) \Omega(t))=\operatorname{det} X(t) \operatorname{tr} \Omega(t)
\end{aligned}
$$

Here, we used the relation $\widetilde{X} X=X \widetilde{X}=(\operatorname{det} X) \operatorname{id}^{3}$. Hence $\frac{d}{d t}\left(\rho(t)^{-1} \operatorname{det} X(t)\right)=0$, where $\rho(t)$ is the right-hand side of (1.8).

[^1]Corollary 1.9. If $\Omega(t)$ in (1.7) satisfies $\operatorname{tr} \Omega(t)=0$, $\operatorname{det} X(t)$ is constant. In particular, if $X_{0} \in \operatorname{SL}(n, \mathbb{R}), X$ is a function valued in $\operatorname{SL}(n, \mathbb{R})^{4}$.
Proposition 1.10. Assume $\Omega(t)$ in (1.7) is skew-symmetric for all t, that is, $\Omega^{T}+\Omega$ is identically O. If $X_{0} \in \mathrm{O}(n)$ (resp. $\left.X_{0} \in \mathrm{SO}(n)\right)^{5}$, then $X(t) \in \mathrm{O}(n)$ (resp. $\left.X(t) \in \mathrm{SO}(n)\right)$ for all t.

Proof. By (1) in Lemma 1.7,

$$
\begin{aligned}
\frac{d}{d t}\left(X X^{T}\right) & =\frac{d X}{d t} X^{T}+X\left(\frac{d X}{d t}\right)^{T} \\
& =X \Omega X^{T}+X \Omega^{T} X^{T}=X\left(\Omega+\Omega^{T}\right) X^{T}=O
\end{aligned}
$$

Hence $X X^{T}$ is constant, that is, if $X_{0} \in \mathrm{O}(n)$,

$$
X(t) X(t)^{T}=X\left(t_{0}\right) X\left(t_{0}\right)^{T}=X_{0} X_{0}^{T}=\mathrm{id}
$$

If $X_{0} \in \mathrm{O}(n)$, this proves the first case of the proposition. Since $\operatorname{det} A= \pm 1$ when $A \in \mathrm{O}(n)$, the second case follows by continuity of $\operatorname{det} X(t)$.

Preliminaries: Norms of Matrix-Valued functions. Let $I=[a, b]$ be a closed interval, and denote by $C^{0}\left(I, \mathrm{M}_{n}(\mathbb{R})\right)$ the set of continuous functions $X: I \rightarrow \mathrm{M}_{n}(\mathbb{R})$. For any positive number k, we define

$$
\begin{equation*}
\|X\|_{I, k}:=\sup \left\{e^{-k t}|X(t)|_{\mathrm{M}} ; t \in I\right\} \tag{1.9}
\end{equation*}
$$

for $X \in C^{0}\left(I, \mathrm{M}_{n}(\mathbb{R})\right)$. When $k=0,\|\cdot\|_{I, 0}$ is the uniform norm for continuous functions, which is complete. Similarly, one can prove the following in the same way:

Lemma 1.11. The norm $\|\cdot\|_{I, k}$ on $C^{0}\left(I, \mathrm{M}_{n}(\mathbb{R})\right)$ is complete.
Linear Ordinary Differential Equations. We prove the fundamental theorem for linear ordinary differential equations.

Proposition 1.12. Let $\Omega(t)$ be a C^{∞}-function valued in $\mathrm{M}_{n}(\mathbb{R})$ defined on an interval I. Then for each $t_{0} \in I$, there exists the unique matrix-valued C^{∞}-function $X(t)=X_{t_{0}, \text { id }}(t)$ such that

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=\mathrm{id} \tag{1.10}
\end{equation*}
$$

Proof. Uniqueness: Assume $X(t)$ and $Y(t)$ satisfy (1.10). Then

$$
Y(t)-X(t)=\int_{t_{0}}^{t}\left(Y^{\prime}(\tau)-X^{\prime}(\tau)\right) d \tau=\int_{t_{0}}^{t}(Y(\tau)-X(\tau)) \Omega(\tau) d \tau \quad\left({ }^{\prime}=\frac{d}{d t}\right)
$$

holds. Hence for an arbitrary closed interval $J \subset I$,

[^2]holds for $t \in J$. Thus, for an appropriate choice of $k \in \mathbb{R}$, it holds that
$$
\|Y-X\|_{J, k} \leqq \frac{1}{2}\|Y-X\|_{J, k},
$$
that is, $\|Y-X\|_{J, k}=0$, proving $Y(t)=X(t)$ for $t \in J$. Since J is arbitrary, $Y=X$ holds on I. Existence: Let $J:=\left[t_{0}, a\right] \subset I$ be a closed interval, and define a sequence $\left\{X_{j}\right\}$ of matrix-valued functions defined on I satisfying $X_{0}(t)=\mathrm{id}$ and
\[

$$
\begin{equation*}
X_{j+1}(t)=\mathrm{id}+\int_{t_{0}}^{t} X_{j}(\tau) \Omega(\tau) d \tau \quad(j=0,1,2, \ldots) . \tag{1.11}
\end{equation*}
$$

\]

Let $k:=2 \sup _{J}|\Omega|_{\mathrm{M}}$. Then

$$
\begin{aligned}
& \left|X_{j+1}(t)-X_{j}(t)\right|_{\mathrm{M}} \leqq \int_{t_{0}}^{t}\left|X_{j}(\tau)-X_{j-1}(\tau)\right|_{\mathrm{M}}|\Omega(\tau)|_{\mathrm{M}} d \tau \\
& \quad \leqq \frac{e^{k\left(t-t_{0}\right)}}{|k|} \sup _{J}|\Omega|_{\mathrm{M}}| | X_{j}-\left.X_{j-1}\right|_{J, k}
\end{aligned}
$$

for an appropriate choice of $k \in \mathbb{R}$, and hence $\left\|X_{j+1}-X_{j}\right\|_{J, k} \leqq \frac{1}{2}\left\|X_{j}-X_{j-1}\right\|_{J, k}$, that is, $\left\{X_{j}\right\}$ is a Cauchy sequence with respect to $\|\cdot\|_{J, k}$. Thus, by completeness (Lemma 1.11), it converges to some $X \in C^{0}\left(J, \mathrm{M}_{n}(\mathbb{R})\right)$. By (1.11), the limit X satisfies

$$
X\left(t_{0}\right)=\mathrm{id}, \quad X(t)=\mathrm{id}+\int_{t_{0}}^{t} X(\tau) \Omega(\tau) d \tau .
$$

Applying the fundamental theorem of calculus, we can see that X satisfies $X^{\prime}(t)=X(t) \Omega(t)$ $\left(^{\prime}=d / d t\right)$. Since J can be taken arbitrarily, existence of the solution on I is proven.

Finally, we shall prove that X is of class C^{∞}. Since $X^{\prime}(t)=X(t) \Omega(t)$, the derivative X^{\prime} of X is continuous. Hence X is of class C^{1}, and so is $X(t) \Omega(t)$. Thus we have that $X^{\prime}(t)$ is of class C^{1}, and then X is of class C^{2}. Iterating this argument, we can prove that $X(t)$ is of class C^{r} for arbitrary r.

Corollary 1.13. Let $\Omega(t)$ be a matrix-valued C^{∞}-function defined on an interval I. Then for each $t_{0} \in I$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function $X_{t_{0}, X_{0}}(t)$ defined on I such that

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0} \quad\left(X(t):=X_{t_{0}, X_{0}}(t)\right) \tag{1.12}
\end{equation*}
$$

In particular, $X_{t_{0}, X_{0}}(t)$ is of class C^{∞} in X_{0} and t.
Proof. We rewrite $X(t)$ in Proposition 1.12 as $Y(t)=X_{t_{0}, \mathrm{id}}(t)$. Then the function

$$
\begin{equation*}
X(t):=X_{0} Y(t)=X_{0} X_{t_{0}, \mathrm{id}}(t), \tag{1.13}
\end{equation*}
$$

is desired one. Conversely, assume $X(t)$ satisfies the conclusion. Noticing $Y(t)$ is a regular matrix for all t because of Proposition 1.8,

$$
W(t):=X(t) Y(t)^{-1}
$$

satisfies

$$
\frac{d W}{d t}=\frac{d X}{d t} Y^{-1}-X Y^{-1} \frac{d Y}{d t} Y^{-1}=X \Omega Y^{-1}-X Y^{-1} Y \Omega Y^{-1}=O
$$

Hence

$$
W(t)=W\left(t_{0}\right)=X\left(t_{0}\right) Y\left(t_{0}\right)^{-1}=X_{0} .
$$

Hence the uniqueness is obtained. The final part is obvious by the expression (1.13).

Proposition 1.14. Let $\Omega(t)$ and $B(t)$ be matrix-valued C^{∞}-functions defined on I. Then for each $t_{0} \in I$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function defined on I satisfying

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t)+B(t), \quad X\left(t_{0}\right)=X_{0} \tag{1.14}
\end{equation*}
$$

Proof. Rewrite X in Proposition 1.12 as $Y:=X_{t_{0}, \text { id }}$. Then

$$
\begin{equation*}
X(t)=\left(X_{0}+\int_{t_{0}}^{t} B(\tau) Y^{-1}(\tau) d \tau\right) Y(t) \tag{1.15}
\end{equation*}
$$

satisfies (1.14). Conversely, if X satisfies (1.14), $W:=X Y^{-1}$ satisfies

$$
X^{\prime}=W^{\prime} Y+W Y^{\prime}=W^{\prime} Y+W Y \Omega, \quad X \Omega+B=W Y \Omega+B
$$

and then we have $W^{\prime}=B Y^{-1}$. Since $W\left(t_{0}\right)=X_{0}$,

$$
W=X_{0}+\int_{t_{0}}^{t} B(\tau) Y^{-1}(\tau) d \tau
$$

Thus we obtain (1.15).
Theorem 1.15. Let I and U be an interval and a domain in \mathbb{R}^{m}, respectively, and let $\Omega(t, \boldsymbol{\alpha})$ and $B(t, \boldsymbol{\alpha})$ be matrix-valued C^{∞}-functions defined on $I \times U\left(\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right)$. Then for each $t_{0} \in I$, $\boldsymbol{\alpha} \in U$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function $X(t)=X_{t_{0}, X_{0}, \boldsymbol{\alpha}}(t)$ defined on I such that

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t, \boldsymbol{\alpha})+B(t, \boldsymbol{\alpha}), \quad X\left(t_{0}\right)=X_{0} \tag{1.16}
\end{equation*}
$$

Moreover,

$$
I \times I \times \mathrm{M}_{n}(\mathbb{R}) \times U \ni\left(t, t_{0}, X_{0}, \boldsymbol{\alpha}\right) \mapsto X_{t_{0}, X_{0}, \boldsymbol{\alpha}}(t) \in \mathrm{M}_{n}(\mathbb{R})
$$

is a C^{∞}-map.
Proof. Let $\widetilde{\Omega}(t, \tilde{\boldsymbol{\alpha}}):=\Omega\left(t+t_{0}, \boldsymbol{\alpha}\right)$ and $\widetilde{B}(t, \tilde{\boldsymbol{\alpha}})=B\left(t+t_{0}, \boldsymbol{\alpha}\right)$, and let $\widetilde{X}(t):=X\left(t+t_{0}\right)$. Then (1.16) is equivalent to

$$
\begin{equation*}
\frac{d \widetilde{X}(t)}{d t}=\widetilde{X}(t) \widetilde{\Omega}(t, \tilde{\boldsymbol{\alpha}})+\widetilde{B}(t, \tilde{\boldsymbol{\alpha}}), \quad \widetilde{X}(0)=X_{0} \tag{1.17}
\end{equation*}
$$

where $\tilde{\boldsymbol{\alpha}}:=\left(t_{0}, \alpha_{1}, \ldots, \alpha_{m}\right)$. There exists the unique solution $\widetilde{X}(t)=\widetilde{X}_{0, X_{0}, \tilde{\boldsymbol{\alpha}}}(t)$ of (1.17) for each $\tilde{\boldsymbol{\alpha}}$ because of Proposition 1.14. So it is sufficient to show differentiability with respect to the parameter $\tilde{\boldsymbol{\alpha}}$. We set $Z=Z(t)$ the unique solution of

$$
\begin{equation*}
\frac{d Z}{d t}=Z \widetilde{\Omega}+\widetilde{X} \frac{\partial \widetilde{\Omega}}{\partial \alpha_{j}}+\frac{\partial \widetilde{B}}{\partial \alpha_{j}}, \quad Z(0)=O \tag{1.18}
\end{equation*}
$$

Then it holds that $Z=\partial \widetilde{X} / \partial \alpha_{j}$. In particular, by the proof of Proposition 1.14, it holds that

$$
Z=\frac{\partial \widetilde{X}}{\partial \alpha_{j}}=\left(\int_{0}^{t}\left(\widetilde{X}(\tau) \frac{\partial \widetilde{\Omega}(\tau, \tilde{\boldsymbol{\alpha}})}{\partial \alpha_{j}}+\frac{\partial \widetilde{B}(\tau, \tilde{\boldsymbol{\alpha}})}{\partial \alpha_{j}}\right) Y^{-1}(\tau) d \tau\right) Y(t)
$$

Here, $Y(t)$ is the unique matrix-valued C^{∞}-function satisfying $Y^{\prime}(t)=Y(t) \widetilde{\Omega}(t, \widetilde{\boldsymbol{\alpha}})$, and $Y(0)=$ id. Hence \tilde{X} is a C^{∞}-function in $(t, \tilde{\boldsymbol{\alpha}})$.

Fundamental Theorem for Space Curves. As an application, we prove the fundamental theorem for space curves. A C^{∞}-map $\gamma: I \rightarrow \mathbb{R}^{3}$ defined on an interval $I \subset \mathbb{R}$ into \mathbb{R}^{3} is said to be a regular curve if $\dot{\gamma} \neq \mathbf{0}$ holds on I. For a regular curve $\gamma(t)$, there exists a parameter change $t=t(s)$ such that $\tilde{\gamma}(s):=\gamma(t(s))$ satisfies $\left|\tilde{\gamma}^{\prime}(s)\right|=1$. Such a parameter s is called the arc-length parameter.

Let $\gamma(s)$ be a regular curve in \mathbb{R}^{3} parametrized by the arc-length satisfying $\gamma^{\prime \prime}(s) \neq \mathbf{0}$ for all s. Then

$$
\boldsymbol{e}(s):=\gamma^{\prime}(s), \quad \boldsymbol{n}(s):=\frac{\gamma^{\prime \prime}(s)}{\left|\gamma^{\prime \prime}(s)\right|}, \quad \boldsymbol{b}(s):=\boldsymbol{e}(s) \times \boldsymbol{n}(s)
$$

forms a positively oriented orthonormal basis $\{\boldsymbol{e}, \boldsymbol{n}, \boldsymbol{b}\}$ of \mathbb{R}^{3} for each s. Regarding each vector as column vector, we have the matrix-valued function

$$
\begin{equation*}
\mathcal{F}(s):=(\boldsymbol{e}(s), \boldsymbol{n}(s), \boldsymbol{b}(s)) \in \mathrm{SO}(3) \tag{1.19}
\end{equation*}
$$

in s, which is called the Frenet frame associated to the curve γ. Under the situation above, we set

$$
\kappa(s):=\left|\gamma^{\prime \prime}(s)\right|>0, \quad \tau(s):=-\left\langle\boldsymbol{b}^{\prime}(s), \boldsymbol{n}(s)\right\rangle
$$

which are called the curvature and torsion, respectively, of γ. Using these quantities, the Frenet frame satisfies

$$
\frac{d \mathcal{F}}{d s}=\mathcal{F} \Omega, \quad \Omega=\left(\begin{array}{ccc}
0 & -\kappa & 0 \tag{1.20}\\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right)
$$

Proposition 1.16. The curvature and the torsion are invariant under the transformation $\boldsymbol{x} \mapsto$ $A \boldsymbol{x}+\boldsymbol{b}$ of $\mathbb{R}^{3}\left(A \in \mathrm{SO}(3), \boldsymbol{b} \in \mathbb{R}^{3}\right)$. Conversely, two curves $\gamma_{1}(s)$, $\gamma_{2}(s)$ parametrized by arclength parameter have common curvature and torsion, there exist $A \in \mathrm{SO}(3)$ and $\boldsymbol{b} \in \mathbb{R}^{3}$ such that $\gamma_{2}=A \gamma_{1}+\boldsymbol{b}$.

Proof. Let κ, τ and \mathcal{F}_{1} be the curvature, torsion and the Frenet frame of γ_{1}, respectively. Then the Frenet frame of $\gamma_{2}=A \gamma_{1}+\boldsymbol{b}\left(A \in \mathrm{SO}(3), \boldsymbol{b} \in \mathbb{R}^{3}\right)$ is $\mathcal{F}_{2}=A \mathcal{F}_{1}$. Hence both \mathcal{F}_{1} and \mathcal{F}_{2} satisfy (1.20), and then γ_{1} and γ_{2} have common curvature and torsion.

Conversely, assume γ_{1} and γ_{2} have common curvature and torsion. Then the frenet frame \mathcal{F}_{1}, \mathcal{F}_{2} both satisfy (1.20). Let \mathcal{F} be the unique solution of (1.20) with $\mathcal{F}\left(t_{0}\right)=$ id. Then by the proof of Corollary 1.13, we have $\mathcal{F}_{j}(t)=\mathcal{F}_{j}\left(t_{0}\right) \mathcal{F}(t)(j=1,2)$. In particular, since $\mathcal{F}_{j} \in \operatorname{SO}(3)$, $\mathcal{F}_{2}(t)=A \mathcal{F}_{1}(t)\left(A:=\mathcal{F}_{2}\left(t_{0}\right) \mathcal{F}_{1}\left(t_{0}\right)^{-1} \in \mathrm{SO}(3)\right)$. Comparing the first column of these, $\gamma_{2}^{\prime}(s)=$ $A \gamma_{1}^{\prime}(t)$ holds. Integrating this, the conclusion follows.

Theorem 1.17 (The fundamental theorem for space curves).
Let $\kappa(s)$ and $\tau(s)$ be C^{∞}-functions defined on an interval I satisfying $\kappa(s)>0$ on I. Then there exists a space curve $\gamma(s)$ parametrized by arc-length whose curvature and torsion are κ and τ, respectively. Moreover, such a curve is unique up to transformation $\boldsymbol{x} \mapsto A \boldsymbol{x}+\boldsymbol{b}(A \in \mathrm{SO}(3)$, $\boldsymbol{b} \in \mathbb{R}^{3}$) of \mathbb{R}^{3}.

Proof. We have already shown the uniqueness in Proposition 1.16. We shall prove the existence: Let $\Omega(s)$ be as in (1.20), and $\mathcal{F}(s)$ the solution of (1.20) with $\mathcal{F}\left(s_{0}\right)=$ id. Since Ω is skewsymmetric, $\mathcal{F}(s) \in \mathrm{SO}(3)$ by Proposition 1.10. Denoting the column vectors of \mathcal{F} by $\boldsymbol{e}, \boldsymbol{n}, \boldsymbol{b}$, and let

$$
\gamma(s):=\int_{s_{0}}^{s} \boldsymbol{e}(\sigma) d \sigma
$$

Then \mathcal{F} is the Frenet frame of γ, and κ, and τ are the curvature and torsion of γ, respectively.

Exercises

1-1 Find the maximal solution of the initial value problem

$$
\frac{d x}{d t}=x(1-x), \quad x(0)=a
$$

where b is a real number.
1-2 Find an explicit expression of a space curve $\gamma(s)$ parametrized by the arc-length s, whose curvature κ and torsion τ satisfy

$$
\kappa=\tau=\frac{1}{\sqrt{2}\left(1+s^{2}\right)}
$$

2 Integrability Conditions

Let $U \subset \mathbb{R}^{m}$ be a domain of $\left(\mathbb{R}^{m} ; u^{1}, \ldots, u^{m}\right)$ and consider an m-tuple of $n \times n$-matrix valued C^{∞}-maps

$$
\begin{equation*}
\Omega_{j}: \mathbb{R}^{m} \supset U \longrightarrow \mathrm{M}_{n}(\mathbb{R}) \quad(j=1, \ldots, m) . \tag{2.1}
\end{equation*}
$$

In this section, we consider an initial value problem of a system of linear partial differential equations

$$
\begin{equation*}
\frac{\partial X}{\partial u^{j}}=X \Omega_{j} \quad(j=1, \ldots, m), \quad X\left(\mathrm{P}_{0}\right)=X_{0} \tag{2.2}
\end{equation*}
$$

where $\mathrm{P}_{0}=\left(u_{0}^{1}, \ldots, u_{0}^{m}\right) \in U$ is a fixed point, X is an $n \times n$-matrix valued unknown, and $X_{0} \in$ $\mathrm{M}_{n}(\mathbb{R})$.
Proposition 2.1. If a C^{∞} _map $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ defined on a domain $U \subset \mathbb{R}^{m}$ satisfies (4.1) with $X_{0} \in \operatorname{GL}(n, \mathbb{R})$, then $X(\mathrm{P}) \in \mathrm{GL}(n, \mathbb{R})$ for all $\mathrm{P} \in U$. In addition, if $\Omega_{j}(j=1, \ldots, m)$ are skew-symmetric and $X_{0} \in \mathrm{SO}(n)$, then $X(\mathrm{P}) \in \mathrm{SO}(n)$ holds for all $\mathrm{P} \in U$.
Proof. Since U is connected, there exists a continuous path $\gamma_{0}:[0,1] \rightarrow U$ such that $\gamma_{0}(0)=\mathrm{P}_{0}$ and $\gamma_{0}(1)=$ P. By Whitney's approximation theorem (cf. Theorem 6.21 in [Lee13]), there exists a smooth path $\gamma:[0,1] \rightarrow U$ joining P_{0} and P approximating γ_{0}. Since $\hat{X}:=X \circ \gamma$ satisfies (2.4) with $\hat{X}(0)=X_{0}$, Proposition 1.8 yields that $\operatorname{det} \hat{X}(1) \neq 0$ whenever $\operatorname{det} X_{0} \neq 0$. Moreover, if Ω_{j} 's are skew-symmetric, so is $\Omega_{\gamma}(t)$ in (2.4). Thus, by Proposition 1.10, we obtain the latter half of the proposition.

Proposition 2.2. If a matrix-valued C^{∞} function $X: U \rightarrow \mathrm{GL}(n, \mathbb{R})$ satisfies (4.1), it holds that

$$
\begin{equation*}
\frac{\partial \Omega_{j}}{\partial u^{k}}-\frac{\partial \Omega_{k}}{\partial u^{j}}=\Omega_{j} \Omega_{k}-\Omega_{k} \Omega_{j} \tag{2.3}
\end{equation*}
$$

for each (j, k) with $1 \leqq j<k \leqq m$.
Proof. Differentiating (4.1) by u^{k}, we have

$$
\frac{\partial^{2} X}{\partial u^{k} \partial u^{j}}=\frac{\partial X}{\partial u^{k}} \Omega_{j}+X \frac{\partial \Omega_{j}}{\partial u^{k}}=X\left(\frac{\partial \Omega_{j}}{\partial u^{k}}+\Omega_{k} \Omega_{j}\right) .
$$

On the other hand, switching the roles of j and k, we get

$$
\frac{\partial^{2} X}{\partial u^{j} \partial u^{k}}=X\left(\frac{\partial \Omega_{k}}{\partial u^{j}}+\Omega_{j} \Omega_{k}\right) .
$$

Since X is of class C^{∞}, the left-hand sides of these equalities coincide, and so are the right-hand sides. Since $X \in \operatorname{GL}(n, \mathbb{R})$, the conclusion follows.

The equality (2.3) is called the integrability condition or compatibility condition of (4.1).
The chain rule yields the following:
Lemma 2.3. Let $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be a C^{∞}-map satisfying (4.1). Then for each smooth path $\gamma: I \rightarrow U$ defined on an interval $I \subset \mathbb{R}, \hat{X}:=X \circ \gamma: I \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfies the ordinary differential equation

$$
\begin{equation*}
\frac{d \hat{X}}{d t}(t)=\hat{X}(t) \Omega_{\gamma}(t) \quad\left(\Omega_{\gamma}(t):=\sum_{j=1}^{m} \Omega_{j} \circ \gamma(t) \frac{d u^{j}}{d t}(t)\right) \tag{2.4}
\end{equation*}
$$

on I, where $\gamma(t)=\left(u^{1}(t), \ldots, u^{m}(t)\right)$.
20. June, 2023. Revised: 27. June, 2023)

Lemma 2.4. Let $\Omega_{j}: U \rightarrow \mathrm{M}_{n}(\mathbb{R})(j=1, \ldots, m)$ be C^{∞}-maps defined on a domain $U \subset \mathbb{R}^{m}$ which satisfy (2.3). Then for each smooth map

$$
\sigma: D \ni(t, w) \longmapsto \sigma(t, w)=\left(u^{1}(t, w), \ldots, u^{m}(t, w)\right) \in U
$$

defined on a domain $D \subset \mathbb{R}^{2}$, it holds that

$$
\begin{equation*}
\frac{\partial T}{\partial w}-\frac{\partial W}{\partial t}-T W+W T=0 \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
T:=\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}, \quad W:=\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial w} \quad\left(\widetilde{\Omega}_{j}:=\Omega_{j} \circ \sigma\right) \tag{2.6}
\end{equation*}
$$

Proof. By the chain rule, we have

$$
\begin{aligned}
\frac{\partial T}{\partial w} & =\sum_{j, k=1}^{m} \frac{\partial \Omega_{j}}{\partial u^{k}} \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial w \partial t} \\
\frac{\partial W}{\partial t} & =\sum_{j, k=1}^{m} \frac{\partial \Omega_{j}}{\partial u^{k}} \frac{\partial u^{k}}{\partial t} \frac{\partial u^{j}}{\partial w}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial t \partial w} \\
& =\sum_{j, k=1}^{m} \frac{\partial \Omega_{k}}{\partial u^{j}} \frac{\partial u^{j}}{\partial t} \frac{\partial u^{k}}{\partial w}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial t \partial w}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{\partial T}{\partial w} & -\frac{\partial W}{\partial t}=\sum_{j, k=1}^{m}\left(\frac{\partial \Omega_{j}}{\partial u^{k}}-\frac{\partial \Omega_{k}}{\partial u^{j}}\right) \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t} \\
& =\sum_{j, k=1}^{m}\left(\widetilde{\Omega}_{j} \widetilde{\Omega}_{k}-\widetilde{\Omega}_{k} \widetilde{\Omega}_{j}\right) \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t} \\
& =\left(\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}\right)\left(\sum_{k=1}^{m} \widetilde{\Omega}_{k} \frac{\partial u^{k}}{\partial w}\right)-\left(\sum_{k=1}^{m} \widetilde{\Omega}_{k} \frac{\partial u^{k}}{\partial w}\right)\left(\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}\right) \\
& =T W-W T .
\end{aligned}
$$

Thus (2.5) holds.

Integrability of linear systems. The main theorem in this section is the following theorem:
Theorem 2.5. Let $\Omega_{j}: U \rightarrow \mathrm{M}_{n}(\mathbb{R})(j=1, \ldots, m)$ be C^{∞}-functions defined on a simply connected domain $U \subset \mathbb{R}^{m}$ satisfying (2.3). Then for each $\mathrm{P}_{0} \in U$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique $n \times n$-matrix valued function $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfying (4.1). Moreover,

- if $X_{0} \in \mathrm{GL}(n, \mathbb{R}), X(\mathrm{P}) \in \mathrm{GL}(n, \mathbb{R})$ holds on U,
- if $X_{0} \in \mathrm{SO}(n)$ and $\Omega_{j}(j=1, \ldots, m)$ are skew-symmetric matrices, $X \in \mathrm{SO}(n)$ holds on U.

Proof. The latter half is a direct conclusion of Proposition 2.1. We show the existence of X : Take a smooth path $\gamma:[0,1] \rightarrow U$ joining P_{0} and P . Then by Theorem 1.15 , there exists a unique $C^{\infty}{ }_{-} \operatorname{map} \hat{X}:[0,1] \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfying (2.4) with initial condition $\hat{X}(0)=X_{0}$.

We shall show that the value $\hat{X}(1)$ does not depend on choice of paths joining P_{0} and P . To show this, choose another smooth path $\tilde{\gamma}$ joining P_{0} and P . Since U is simply connected, there
exists a homotopy between γ and $\tilde{\gamma}$, that is, there exists a continuous map $\sigma_{0}:[0,1] \times[0,1] \ni$ $(t, w) \mapsto \sigma(t, w) \in U$ satisfying

$$
\begin{align*}
\sigma_{0}(t, 0) & =\gamma(t), & \sigma_{0}(t, 1) & =\tilde{\gamma}(t), \tag{2.7}\\
\sigma_{0}(0, w) & =\mathrm{P}_{0}, & & \sigma_{0}(1, w)
\end{align*}
$$

Then, by Whitney's approximation theorem (Theorem 6.21 in [Lee13]) again, there exists a smooth map $\sigma:[0,1] \times[0,1] \rightarrow U$ satisfying the same boundary conditions as (2.7):

$$
\begin{align*}
\sigma(t, 0) & =\gamma(t), & \sigma(t, 1) & =\tilde{\gamma}(t), \tag{2.8}\\
\sigma(0, w) & =\mathrm{P}_{0}, & & \sigma(1, w)
\end{align*}
$$

We set T and W as in (2.6). For each fixed $w \in[0,1]$, there exists $X_{w}:[0,1] \rightarrow \mathrm{M}_{n}(\mathbb{R})$ such that

$$
\frac{d X_{w}}{d t}(t)=X_{w}(t) T(t, w), \quad X_{w}(0)=X_{0} .
$$

Since $T(t, w)$ is smooth in t and w, the map

$$
\check{X}:[0,1] \times[0,1] \ni(t, w) \mapsto X_{w}(t) \in \mathrm{M}_{n}(\mathbb{R})
$$

is a smooth map, because of smoothness in parameter α in Theorem 1.15. To show that $\hat{X}(1)=$ $\check{X}(1,0)$ does not depend on choice of paths, it is sufficient to show that

$$
\begin{equation*}
\frac{\partial \check{X}}{\partial w}=\check{X} W \tag{2.9}
\end{equation*}
$$

holds on $[0,1] \times[0,1]$. In fact, by (2.8), $W(1, w)=0$ for all $w \in[0,1]$, and then (2.9) implies that $\check{X}(1, w)$ is constant.

We prove (2.9): By definition, it holds that

$$
\begin{equation*}
\frac{\partial \check{X}}{\partial t}=\check{X} T, \quad \check{X}(0, w)=X_{0} \tag{2.10}
\end{equation*}
$$

for each $w \in[0,1]$. Hence by (2.5),

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{\partial \check{X}}{\partial w} & =\frac{\partial^{2} \check{X}}{\partial t \partial w}=\frac{\partial^{2} \check{X}}{\partial w \partial t}=\frac{\partial}{\partial w}(\check{X} T) \\
& =\frac{\partial \check{X}}{\partial w} T+\check{X} \frac{\partial T}{\partial w}=\frac{\partial \check{X}}{\partial w} T+\check{X}\left(\frac{\partial W}{\partial t}+T W-W T\right) \\
& =\frac{\partial \check{X}}{\partial w} T+\check{X} \frac{\partial W}{\partial t}+\frac{\partial \check{X}}{\partial t} W-\check{X} W T \\
& =\frac{\partial}{\partial t}(\check{X} W)+\left(\frac{\partial \check{X}}{\partial w}-\check{X} W\right) T .
\end{aligned}
$$

So, the function $Y_{w}(t):=\partial \check{X} / \partial w-\check{X} W$ satisfies the ordinary differential equation

$$
\frac{d Y_{w}}{d t}(t)=Y_{w}(t) T(t, w), \quad Y_{w}(0)=O
$$

for each $w \in[0,1]$. Thus, by the uniqueness of the solution, $Y_{w}(t)=O$ holds on $[0,1] \times[0,1]$. Hence we have (2.9).

Thus, $\hat{X}(1)$ depends only on the end point P of the path. Hence we can set $X(\mathrm{P}):=\hat{X}(1)$ for each $\mathrm{P} \in U$, and obtain a map $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$. Finally we show that X is the desired solution. The initial condition $X\left(\mathrm{P}_{0}\right)=X_{0}$ is obviously satisfied. On the other hand, if we set

$$
Z(\delta):=X\left(u^{1}, \ldots, u^{j}+\delta, \ldots, u^{m}\right),
$$

$Z(\delta)$ satisfies the equation (2.4) for the path $\gamma(\delta):=\left(u^{1}, \ldots, u^{j}+\delta, \ldots, u^{m}\right)$ with $Z(0)=X(\mathrm{P})$. Since $\Omega_{\gamma}=\Omega_{j}$,

$$
\frac{\partial X}{\partial u^{j}}(\mathrm{P})=\left.\frac{d Z}{d \delta}\right|_{\delta=0}=Z(0) \Omega_{j}(\mathrm{P})=X(\mathrm{P}) \Omega_{j}(\mathrm{P})
$$

which completes the proof.

Application: Poincaré's lemma.

Theorem 2.6 (Poincaré's lemma). If a differential 1-form

$$
\omega=\sum_{j=1}^{m} \alpha_{j}\left(u^{1}, \ldots, u^{m}\right) d u^{j}
$$

defined on a simply connected domain $U \subset \mathbb{R}^{m}$ is closed, that is, $d \omega=0$ holds, then there exists a C^{∞}-function f on U such that $d f=\omega$. Such a function f is unique up to additive constants.

Proof. Since

$$
d \omega=\sum_{i<j}\left(\frac{\partial \alpha_{j}}{\partial u^{i}}-\frac{\partial \alpha_{i}}{\partial u^{j}}\right) d u^{i} \wedge d u^{j},
$$

the assumption is equivalent to

$$
\begin{equation*}
\frac{\partial \alpha_{j}}{\partial u^{i}}-\frac{\partial \alpha_{i}}{\partial u^{j}}=0 \quad(1 \leqq i<j \leqq m) . \tag{2.11}
\end{equation*}
$$

Consider a system of linear partial differential equations with unknown ξ, a 1×1-matrix valued function (i.e. a real-valued function), as

$$
\begin{equation*}
\frac{\partial \xi}{\partial u^{j}}=\xi \alpha_{j} \quad(j=1, \ldots, m), \quad \xi\left(u_{0}^{1}, \ldots, u_{0}^{m}\right)=1 . \tag{2.12}
\end{equation*}
$$

Then it satisfies (2.3) because of (2.11). Hence by Theorem 4.5, there exists a smooth function $\xi\left(u^{1}, \ldots, u^{m}\right)$ satisfying (2.12). In particular, Proposition 1.8 yields $\xi=\operatorname{det} \xi$ never vanishes. Hence $\xi\left(u_{0}^{1}, \ldots, u_{0}^{m}\right)=1>0$ means that $\xi>0$ holds on U. Letting $f:=\log \xi$, we have the function f satisfying $d f=\omega$.

Next, we show the uniqueness: if two functions f and g satisfy $d f=d g=\omega$, it holds that $d(f-g)=0$. Hence by connectivity of $U, f-g$ must be constant.

Application: Conjugation of Harmonic functions. In this paragraph, we identify \mathbb{R}^{2} with the complex plane \mathbb{C}. It is well-known that a smooth function

$$
\begin{equation*}
f: U \ni u+\mathrm{i} v \longmapsto \xi(u, v)+\mathrm{i} \eta(u, v) \in \mathbb{C} \quad(\mathrm{i}=\sqrt{-1}) \tag{2.13}
\end{equation*}
$$

defined on a domain $U \subset \mathbb{C}$ is holomorphic if and only if it satisfies the following relation, called the Cauchy-Riemann equations:

$$
\begin{equation*}
\frac{\partial \xi}{\partial u}=\frac{\partial \eta}{\partial v}, \quad \frac{\partial \xi}{\partial v}=-\frac{\partial \eta}{\partial u} . \tag{2.14}
\end{equation*}
$$

Definition 2.7. A function $f: U \rightarrow \mathbb{R}$ defined on a domain $U \subset \mathbb{R}^{2}$ is said to be harmonic if it satisfies

$$
\Delta f=f_{u u}+f_{v v}=0 .
$$

The operator Δ is called the Laplacian.

Proposition 2.8. If function f in (2.13) is holomorphic, $\xi(u, v)$ and $\eta(u, v)$ are harmonic functions.

Proof. By (2.14), we have

$$
\xi_{u u}=\left(\xi_{u}\right)_{u}=\left(\eta_{v}\right)_{u}=\eta_{v u}=\eta_{u v}=\left(\eta_{u}\right)_{v}=\left(-\xi_{v}\right)_{v}=-\xi_{v v}
$$

Hence $\Delta \xi=0$. Similarly,

$$
\eta_{u u}=\left(-\xi_{v}\right)_{u}=-\xi_{v u}=-\xi_{u v}=-\left(\xi_{u}\right)_{v}=-\left(\eta_{v}\right)_{v}=-\eta_{v v}
$$

Thus $\Delta \eta=0$.
Theorem 2.9. Let $U \subset \mathbb{C}=\mathbb{R}^{2}$ be a simply connected domain and $\xi(u, v)$ a C^{∞}-function harmonic on U^{6}. Then there exists a C^{∞} harmonic function η on U such that $\xi(u, v)+\mathrm{i} \eta(u, v)$ is holomorphic on U.
Proof. Let $\alpha:=-\xi_{v} d u+\xi_{u} d v$. Then by the assumption,

$$
d \alpha=\left(\xi_{v v}+\xi_{u u}\right) d u \wedge d v=0
$$

holds, that is, α is a closed 1-form. Hence by simple connectivity of U and the Poincaré's lemma (Theorem 4.8), there exists a function η such that $d \eta=\eta_{u} d u+\eta_{v} d v=\alpha$. Such a function η satisfies (2.14) for given ξ. Hence $\xi+\mathrm{i} \eta$ is holomorphic in $u+\mathrm{i} v$.

Example 2.10. A function $\xi(u, v)=e^{u} \cos v$ is harmonic. Set

$$
\alpha:=-\xi_{v} d u+\xi_{u} d v=e^{u} \sin v d u+e^{u} \cos v d v
$$

Then $\eta(u, v)=e^{u} \sin v$ satisfies $d \eta=\alpha$. Hence

$$
\xi+\mathrm{i} \eta=e^{u}(\cos v+\mathrm{i} \sin v)=e^{u+\mathrm{i} v}
$$

is holomorphic in $u+\mathrm{i} v$.
Definition 2.11. The harmonic function η in Theorem 2.9 is called the conjugate harmonic function of ξ.

Exercises

2-1 Let $\xi(u, v):=\log \sqrt{u^{2}+v^{2}}$ be a function defined on $U:=\mathbb{R}^{2} \backslash\{(0,0)\}$.
(1) Show that ξ is harmonic on U.
(2) Find the conjugate harmonic function η of ξ on

$$
V=\mathbb{R}^{2} \backslash\{(u, 0) \mid u \leqq 0\} \subset U
$$

(3) Show that there exists no conjugate harmonic function of ξ defined on U.

2-2 Consider a linear system of partial differential equations for 3×3-matrix valued unknown X on a domain $U \subset \mathbb{R}^{2}$ as

$$
\frac{\partial X}{\partial u}=X \Omega, \quad \frac{\partial X}{\partial v}=X \Lambda, \quad\left(\Omega:=\left(\begin{array}{ccc}
0 & -\alpha & -h_{1}^{1} \\
\alpha & 0 & -h_{1}^{2} \\
h_{1}^{1} & h_{1}^{2} & 0
\end{array}\right), \quad \Lambda:=\left(\begin{array}{ccc}
0 & -\beta & -h_{2}^{1} \\
\beta & 0 & -h_{2}^{2} \\
h_{2}^{1} & h_{2}^{2} & 0
\end{array}\right)\right)
$$

where (u, v) are the canonical coordinate system of \mathbb{R}^{2}, and α, β and $h_{j}^{i}(i, j=1,2)$ are smooth functions defined on U. Write down the integrability conditions in terms of α, β and h_{j}^{i}.

[^3]
3 Differential Forms

Let M be an n-dimensional manifold and denote by $\mathcal{F}(M)$ and $\mathfrak{X}(M)$ the set of smooth function and the set of smooth vector fields on M, respectively.

Lie brackets A vector field $X \in \mathfrak{X}(M)$ can be considered as a differential operator acting on $\mathcal{F}(M)$ as $(X f)(p)=X_{p} f$. By definition it satisfies the Leibniz rule

$$
\begin{equation*}
X(f g)=f(X g)+g(X f) \quad(X \in \mathfrak{X}(M), f, g \in \mathcal{F}(M)) \tag{3.1}
\end{equation*}
$$

For two vector fields $X, Y \in \mathfrak{X}(M)$, set

$$
\begin{equation*}
[X, Y]: \mathcal{F}(M) \ni f \longmapsto X(Y f)-Y(X f) \in \mathcal{F}(M) \tag{3.2}
\end{equation*}
$$

Then $[X, Y]$ also satisfies the Leibnitz rule (3.1), and gives a vector field on M. The map

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \mapsto[X, Y] \in \mathfrak{X}(M)
$$

is called the Lie bracket on $\mathfrak{X}(M)$. One can easily show that the product [,] is bilinear, skew symmetric and satisfies the Jacobi identity

$$
\begin{equation*}
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=\mathbf{0} \tag{3.3}
\end{equation*}
$$

that is, $(\mathfrak{X}(M),[]$,$) is a Lie algebra (of infinite dimension). By the Leibniz rule, it holds that$

$$
\begin{equation*}
[f X, Y]=f[X, Y]-(Y f) X, \quad[X, f Y]=f[X, Y]+(X f) Y \quad(X, Y \in \mathfrak{X}(M), f \in \mathcal{F}(M)) \tag{3.4}
\end{equation*}
$$

Tensors. For each $p \in M$, the dual space $T_{p}^{*} M$ of $T_{p} M$ is the liner space consisting of all linear maps from $T_{p} M$ to \mathbb{R}.

Lemma 3.1. Let $\left(x^{1}, \ldots, x^{n}\right)$ be a local coordinate system of M around p, and set

$$
\left(\frac{\partial}{\partial x^{j}}\right)_{p}: \mathcal{F}(M) \ni f \mapsto \frac{\partial f}{\partial x^{j}}(p), \quad\left(d x^{j}\right)_{p}: T_{p} M \rightarrow \mathbb{R} \quad \text { with } \quad\left(d x^{j}\right)_{p}\left(\left(\frac{\partial}{\partial x^{k}}\right)_{p}\right)=\delta_{k}^{j}
$$

for $j, k=1, \ldots, n$. Then $\left\{\left(\partial / \partial x^{j}\right)_{p}\right\}_{j=1, \ldots, n}$ and $\left\{\left(d x^{j}\right)_{p}\right\}_{j=1, \ldots, n}$ are a basis of $T_{p} M$ and $T_{p}^{*} M$, respectively, where δ_{k}^{j} denotes Kronecker's delta symbol.

We let

$$
T_{p}^{*} M \otimes T_{p}^{*} M \quad\left(\text { resp. } \quad T_{p}^{*} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M\right)
$$

the set of bilinear (resp. trilinear) maps of $T_{p} M \times T_{p} M$ (resp. $T_{p} M \times T_{p} M \times T_{p} M$) to \mathbb{R}. A section of the vector bundle
$T^{*} M \otimes T^{*} M:=\bigcup_{p \in M} T_{p}^{*} M \otimes T_{p}^{*} M \quad\left(\operatorname{resp} . T^{*} M \otimes T^{*} M \otimes T^{*} M:=\bigcup_{p \in M} T_{p}^{*} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M\right)$
is called a covariant 2 (resp. 3)-tensor.
A section $\omega \in \Gamma\left(T^{*} M\right)$ of the cotangent bundle $T^{*} M$ is called a covariant 1-tensor or a 1-form. A one form ω induces a linear map

$$
\begin{equation*}
\omega: \mathfrak{X}(M) \ni X \longmapsto \omega(X) \in \mathcal{F}(M), \quad \text { where } \quad \omega(X)(p)=\omega_{p}\left(X_{p}\right) \tag{3.5}
\end{equation*}
$$

By definition, it holds that

$$
\frac{(3.6)}{\text { 27. June, 2023. Revised: 04. July, 2023) }} \quad \omega(f X)=f \omega(X) \quad(f \in \mathcal{F}(M), X \in \mathfrak{X}(M))
$$

Lemma 3.2. A linear map $\omega: \mathfrak{X}(M) \rightarrow \mathcal{F}(M)$ is a 1 -form if and only if (3.6) holds.
Proof. The "only if" part is trivial by definition. Assume a linear map $\omega: \mathfrak{X}(M) \rightarrow \mathcal{F}(M)$ satisfies (3.6). In fact, under a local coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ around $p \in M$,

$$
\omega(X)(p)=\omega\left(\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}\right)(p)=\sum_{j=1}^{n} X^{j}(p) \omega\left(\frac{\partial}{\partial x^{j}}\right)_{p}, \quad\left(X=\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}} .\right)
$$

holds. In other words, $\omega(X)(p)$ depend only on X_{p}. Hence ω induces a map $\omega_{p}: T_{p} M \rightarrow \mathbb{R}$.
Similarly, a covariant 2 (resp. 3) tensor $\alpha \in \Gamma\left(T^{*} M \otimes T^{*} M\right)$ (resp. $\beta \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes\right.$ $\left.T^{*} M\right)$)induces a bilinear (resp. trilinear) map $\alpha: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathcal{F}(M)$. (resp. $\beta: \mathfrak{X}(M) \times$ $\mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathcal{F}(M)$. By the same reason as Lemma 3.2, we have

Lemma 3.3. A bilinear map $\alpha: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathcal{F}(M)($ resp. $\beta: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathcal{F}(M))$ is a a covariant 2 (resp. 3)-tensor if and only if

$$
\begin{aligned}
& \alpha(f X, Y)=\alpha(X, f Y)=f \alpha(X, Y) \\
& \quad(\text { resp. } \quad \beta(f X, Y, Z)=\beta(X, f Y, Z)=\beta(X, Y, f Z)=f \beta(X, Y, Z))
\end{aligned}
$$

holds for all $X, Y, Z \in \mathfrak{X}(M)$ and $f \in \mathcal{F}(M)$.
A covariant 2 (resp. 3)-tensor α (resp. β) said to be skew-symmetric if

$$
\alpha(X, Y)=-\alpha(Y, X), \quad(\beta(X, Y, Z)=-\beta(Y, X, Z)=-\beta(X, Z, Y)=-\beta(Z, Y, X))
$$

holds for all $X, Y, Z \in \mathfrak{X}(M)$. We denote

$$
\wedge^{k}(M):= \begin{cases}\mathcal{F}(M) & (k=0) \tag{3.7}\\ \Gamma\left(T^{*} M\right) & (k=1) \\ \left\{\omega \in \Gamma\left(T^{*} M \otimes T^{*} M\right) ; \omega \text { is skew-symmetric }\right\} & (k=2) \\ \left\{\omega \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes T^{*} M\right) ; \omega \text { is skew-symmetric }\right\} & (k=3)\end{cases}
$$

An element of $\wedge^{k}(M)$ is called an k-form.

The Exterior products. The exterior product $\alpha \wedge \beta \in \wedge^{2}(M)$ of two 1-forms $\alpha, \beta \in \wedge^{1}(M)$ is defined as

$$
\begin{equation*}
(\alpha \wedge \beta)(X, Y):=\alpha(X) \beta(Y)-\alpha(Y) \beta(X) \tag{3.8}
\end{equation*}
$$

On the other hand, the exterior product of α and ω is defined as a 3 -form on M by

$$
\begin{equation*}
(\alpha \wedge \omega)(X, Y, Z)=(\omega \wedge \alpha)(X, Y, Z):=\alpha(X, Y) \omega(Z)+\alpha(Y, Z) \omega(X)+\alpha(Z, X) \omega(Y) \tag{3.9}
\end{equation*}
$$

Then by a direct computation together with (3.8), it holds that

$$
\begin{equation*}
(\mu \wedge \omega) \wedge \lambda=\mu \wedge(\omega \wedge \lambda)(=: \mu \wedge \omega \wedge \lambda) \tag{3.10}
\end{equation*}
$$

for 1-forms μ, ω and λ.

The Exterior derivative. Under a local coordinate system $\left(x^{1}, \ldots, x^{n}\right)$, a one form α and a two form ω are expressed as

$$
\alpha=\sum_{j=1}^{n} \alpha_{j} d x^{j}, \quad \omega=\sum_{1 \leqq i<j \leqq n} \omega_{i j} d x^{i} \wedge d x^{j}
$$

where $\alpha_{j}(j=1, \ldots, n)$ and $\omega_{i j}(1 \leqq i<j \leqq n)$ are smooth functions in $\left(x^{1}, \ldots, x^{n}\right)$. By Lemma 3.3 and the property (3.4) of the Lie brackets, we have
Lemma 3.4. For a function $f \in \mathcal{F}(M)=\wedge^{0}(M)$, a 1 -form $\alpha \in \wedge^{1}(M)$ and a 2 -form $\beta \in \wedge^{2}(M)$)

$$
\begin{aligned}
d f & : \mathfrak{X}(M) \ni X \mapsto d f(X)=X f \in \mathcal{F}(M) \\
d \alpha: & \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \mapsto X \alpha(Y)-Y \alpha(X)-\alpha([X, Y]) \in \mathcal{F}(M) \\
d \beta: & \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y, Z) \mapsto \\
& X \beta(Y, Z)+Y \beta(Z, X)+Z \beta(X, Y)-\beta([X, Y], Z)-\beta([Y, Z], Z)-\beta([Z, X], Y)
\end{aligned}
$$

are a 1-form, a 2-form and a 3-form respectively.
Definition 3.5. For a function f, a 1 -form α and a 2 -form $\beta, d f, d \alpha$ and $d \beta$ are called the exterior derivatives of f, α and β, respectively.

Then, for one forms μ and ω, we have

$$
\begin{equation*}
d d \omega=0, \quad d(\mu \wedge \omega)=d \mu \wedge \omega-\mu \wedge d \omega \tag{3.11}
\end{equation*}
$$

by the definition and the Jacobi identity (3.3).
The Riemannian connection. In the rest of this section, we let (M, g) be an n-dimensional (pseudo) Riemannian manifold, and denote by \langle,$\rangle the inner product induced by g$.

Lemma 3.6. There exists the unique bilinear map $\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \mapsto \nabla_{X} Y \in \mathfrak{X}(M)$ satisfying

$$
\begin{equation*}
\nabla_{X} Y-\nabla_{Y} X=[X, Y], \quad X\langle Y, Z\rangle=\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle X, \nabla_{X} Z\right\rangle \quad(X, Y, Z \in \mathfrak{X}(M)) \tag{3.12}
\end{equation*}
$$

Definition 3.7. The map ∇ in Lemma 3.6 is called the Riemannian connection or the Levi-Civita connection of (M, g).

Lemma 3.8. The Riemannian connection ∇ satisfies

$$
\begin{equation*}
\nabla_{f X} Y=f \nabla_{X} Y, \quad \nabla_{X}(f Y)=(X f) Y+f \nabla_{X} Y \tag{3.13}
\end{equation*}
$$

Remark 3.9. A bilinear map $\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ satisfying (3.13) is called a linear connection or an affine connection.
Remark 3.10. By Lemmas 3.8 and 3.2, $X \mapsto \nabla_{X} Y$ determines a one form.

Orthonormal frames. For a sake of simplicity, we assume that g is positive definite, in other words, (M, g) is a Riemannian manifold.

Definition 3.11. Let $U \subset M$ be a domain of M. An n-tuple of vector fields $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ on U is called an orthonormal frame on U if $\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\delta_{i j}$. It is said to be positive if M is oriented and $\left\{\boldsymbol{e}_{j}\right\}$ is compatible to the orientation on M.

Remark 3.12. For each $p \in M$, there exists a neighborhood U of p which admits an orthonormal frame on U.

Lemma 3.13. Let $\left\{\boldsymbol{e}_{j}\right\}$ and $\left\{\boldsymbol{v}_{j}\right\}$ be two orthonormal frames on $U \subset M$. Then there exists a smooth map

$$
\begin{equation*}
\Theta: U \longrightarrow \mathrm{O}(n) \quad \text { such that } \quad\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \Theta \tag{3.14}
\end{equation*}
$$

Moreover, if $\left\{\boldsymbol{e}_{j}\right\}$ and $\left\{\boldsymbol{v}_{j}\right\}$ determines the common orientation, Θ is valued on $\mathrm{SO}(n)$.
The map Θ in Lemma 3.13 is called a gauge transformation.
For an orthonormal frame $\left\{\boldsymbol{e}_{j}\right\}$ on U, we denote by $\left\{\omega^{j}\right\}_{j=1, \ldots, n}$ the dual frame of $\left\{\boldsymbol{e}_{j}\right\}$, that is, $\omega^{j} \in \wedge^{1}(U)$ such that

$$
\omega^{j}\left(\boldsymbol{e}_{k}\right)=\delta_{k}^{j}= \begin{cases}1 & (j=k) \\ 0 & \text { (otherwise) }\end{cases}
$$

In other words, $\omega^{j}(X)=\left\langle\boldsymbol{e}_{j}, X\right\rangle$.
Lemma 3.14. Two orthonormal frames $\left\{\boldsymbol{e}_{j}\right\}$ and $\left\{\boldsymbol{v}_{j}\right\}$ are related as (3.14). Then their duals $\left\{\omega^{j}\right\}$ and $\left\{\lambda^{j}\right\}$ satisfy

$$
\left(\begin{array}{c}
\lambda^{1} \\
\vdots \\
\lambda^{n}
\end{array}\right)=\Theta\left(\begin{array}{c}
\omega^{1} \\
\vdots \\
\omega^{n}
\end{array}\right)
$$

Proof.

$$
\left(\begin{array}{c}
\lambda^{1} \\
\vdots \\
\lambda^{n}
\end{array}\right)\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)=\left(\begin{array}{c}
\lambda^{1} \\
\vdots \\
\lambda^{n}
\end{array}\right)\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right) \Theta=\Theta=\Theta\left(\begin{array}{c}
\omega^{1} \\
\vdots \\
\omega^{n}
\end{array}\right)\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)
$$

Connection forms.

Definition 3.15. The connection form with respect to an orthonormal frame $\left\{\boldsymbol{e}_{j}\right\}$ is a $n \times n$-matrix valued one form Ω on U defined by

$$
\Omega=\left(\begin{array}{cccc}
\omega_{1}^{1} & \omega_{2}^{1} & \ldots & \omega_{n}^{1} \\
\omega_{1}^{2} & \omega_{2}^{2} & \ldots & \omega_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{1}^{n} & \omega_{2}^{n} & \ldots & \omega_{n}^{n}
\end{array}\right), \quad \omega_{j}^{k}:=\left\langle\nabla \boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle \in \wedge^{1}(U)
$$

By definition, we have $\nabla \boldsymbol{e}_{j}=\sum_{k=1}^{n} \omega_{j}^{k} \boldsymbol{e}_{k}$, that is, $\nabla\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \Omega$.
Lemma 3.16. $\omega_{j}^{k}=-\omega_{k}^{j}$.
Proof. $\omega_{j}^{k}=\left\langle\nabla \boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle=d\left\langle\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{j}, \nabla \boldsymbol{e}_{k}\right\rangle=-\omega_{k}^{j}$.

Lemma 3.17. $d \omega^{i}=\sum_{l=1}^{n} \omega^{l} \wedge \omega_{l}^{i}$.
Proof.

$$
\begin{aligned}
d \omega^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right) & =\boldsymbol{e}_{j} \omega^{i}\left(\boldsymbol{e}_{k}\right)-\boldsymbol{e}_{k} \omega^{i}\left(\boldsymbol{e}_{j}\right)-\omega^{i}\left(\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right)=-\omega^{i}\left(\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right) \\
& =-\omega^{i}\left(\nabla \boldsymbol{e}_{j} \boldsymbol{e}_{k}-\nabla \boldsymbol{e}_{k} \boldsymbol{e}_{j}\right)=-\left\langle\nabla \boldsymbol{e}_{j} \boldsymbol{e}_{k}-\nabla \boldsymbol{e}_{k} \boldsymbol{e}_{j}, \boldsymbol{e}_{i}\right\rangle=-\omega_{k}^{i}\left(\boldsymbol{e}_{j}\right)+\omega_{j}^{i}\left(\boldsymbol{e}_{k}\right) \\
& =\sum_{l=1}^{n}\left(-\omega_{l}^{i}\left(\boldsymbol{e}_{j}\right) \omega^{l}\left(\boldsymbol{e}_{k}\right)+\omega_{l}^{i}\left(\boldsymbol{e}_{k}\right) \omega^{l}\left(\boldsymbol{e}_{j}\right)\right)=\sum_{l=1}^{n} \omega^{l} \wedge \omega_{l}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right) .
\end{aligned}
$$

Exercises

3-1 Let $\left\{\boldsymbol{e}_{j}\right\}$ and $\left\{\boldsymbol{v}_{j}\right\}$ be two orthonormal frames on a domain U of a Riemannian n-manifold M, which are related as (3.14). Show that the connection forms Ω of $\left\{\boldsymbol{e}_{j}\right\}$ and Λ of $\left\{\boldsymbol{v}_{j}\right\}$ satisfy $\Omega=\Theta^{-1} \Lambda \Theta+\Theta^{-1} d \Theta$.

3-2 Let \mathbb{R}_{1}^{3} be the 3-dimensional Lorentz-Minkowski space and let $H^{2}(-1)$ the hyperbolic 2-space (i.e. the hyperbolic plane) of constant curvature -1 .
(1) Verify that

$$
\boldsymbol{f}(u, v):=(\cosh u, \cos v \sinh u, \sin v \sinh u)
$$

gives a local coordinate system on $U:=H^{2}(-1) \backslash\{(1,0,0)\}$, and

$$
\boldsymbol{e}_{1}:=(\sinh u, \cos v \cosh u, \sin v \cosh u), \quad \boldsymbol{e}_{2}:=(0,-\sin v, \cos v)
$$

forms a orthonormal frame on U.
(2) Compute the connection form(s) with respect to the orthonormal frame $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$.

4 Curvatre forms

4.1 Addendum to the previous section

Proposition 4.1 (The local expression of the Lie bracket). Let $\left(U ; x^{1}, \ldots, x^{n}\right)$ be a coordinate neighborhood of an n-manifold M. Then the Lie bracket of two vector fields

$$
X=\sum_{j=1}^{n} \xi^{j} \frac{\partial}{\partial x^{j}}, \quad Y=\sum_{j=1}^{n} \eta^{j} \frac{\partial}{\partial x^{j}}
$$

is expressed as

$$
[X, Y]=\sum_{j=1}^{n}\left(\xi^{k} \frac{\partial \eta^{j}}{\partial x^{k}}-\eta^{k} \frac{\partial \xi^{j}}{\partial x^{k}}\right) \frac{\partial}{\partial x^{j}}
$$

Proof. For a smooth function f on U, it holds that

$$
\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}} f=\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}=\frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}=\frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{i}} f
$$

Hence $\left[\partial / \partial x^{i}, \partial / \partial x^{j}\right]=0$. Then the conclusion follows from bilinearlity of $[X, Y]$ and the formula

$$
[f X, Y]=f[X, Y]-(Y f) X, \quad[X, f Y]=f[X, Y]+(X f) Y
$$

for a smooth function f and vector fields X and Y.
Proposition 4.2 (A local expression of the connection forms). Let U be a domain of a Riemannian n-manifold (M, g) and $\left[e_{1}, \ldots, e_{n}\right]$ an orthonormal frame on U. Then the connection form ω_{i}^{j} with respect to the frame $\left[\boldsymbol{e}_{j}\right]$ is obtained as

$$
\omega_{i}^{j}\left(\boldsymbol{e}_{k}\right)=\frac{1}{2}\left(-\left\langle\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right], \boldsymbol{e}_{k}\right\rangle+\left\langle\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right], \boldsymbol{e}_{i}\right\rangle+\left\langle\left[\boldsymbol{e}_{k}, \boldsymbol{e}_{i}\right], \boldsymbol{e}_{j}\right\rangle\right)
$$

where \langle,$\rangle denotes the inner product induced from g$.
Proof. By the definition of the Levi-Civita connection ∇,

$$
\begin{aligned}
\omega_{i}^{j}\left(\boldsymbol{e}_{k}\right) & =\left\langle\nabla \boldsymbol{e}_{k} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\boldsymbol{e}_{k}\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle-\left\langle\boldsymbol{e}_{i}, \nabla \boldsymbol{e}_{k} \boldsymbol{e}_{j}\right\rangle=-\left\langle\boldsymbol{e}_{i}, \nabla \boldsymbol{e}_{j} \boldsymbol{e}_{k}+\left[\boldsymbol{e}_{k}, \boldsymbol{e}_{j}\right]\right\rangle \\
& =-\boldsymbol{e}_{j}\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right\rangle+\left\langle\nabla \boldsymbol{e}_{j} \boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{i},\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right\rangle \\
& =\left\langle\nabla \boldsymbol{e}_{i} \boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle+\left\langle\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right], \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{i},\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right\rangle \\
& =\boldsymbol{e}_{i}\left\langle\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{j}, \nabla \boldsymbol{e}_{i} \boldsymbol{e}_{k}\right\rangle+\left\langle\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right], \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{i},\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right\rangle \\
& =-\left\langle\boldsymbol{e}_{j}, \nabla \boldsymbol{e}_{k} \boldsymbol{e}_{i}\right\rangle-\left\langle\boldsymbol{e}_{j},\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right]\right\rangle+\left\langle\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right], \boldsymbol{e}_{k}\right\rangle-\left\langle\boldsymbol{e}_{i},\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]\right\rangle \\
& =-\omega_{i}^{j}\left(\boldsymbol{e}_{k}\right)+\left\langle\left[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right], \boldsymbol{e}_{k}\right\rangle-\left\langle\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right], \boldsymbol{e}_{i}\right\rangle+\left\langle\left[\boldsymbol{e}_{k}, \boldsymbol{e}_{i}\right], \boldsymbol{e}_{j}\right\rangle
\end{aligned}
$$

4.2 Preliminaries

Integrability condition, a review. Let U be a domain of \mathbb{R}^{m} with coordinate system $\left(x^{1}, \ldots, x^{m}\right)$, and consider a system of differential equations

$$
\begin{equation*}
\frac{\partial F}{\partial x^{l}}=F \Omega_{l} \quad(l=1, \ldots, m) \tag{4.1}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
F\left(\mathrm{P}_{0}\right)=F_{0} \in \mathrm{M}_{n}(\mathbb{R}), \quad \mathrm{P}_{0}=\left(x_{0}^{1}, \ldots, x_{0}^{m}\right) \in U \tag{4.2}
\end{equation*}
$$

where F is an unknown map into the space of $n \times n$-real matrices $\mathrm{M}_{n}(\mathbb{R})$, and the coefficient matrices $\Omega_{l}(l=1, \ldots, m)$ are $\mathrm{M}_{n}(\mathbb{R})$-valued C^{∞}-functions.
Lemma 4.3. If the initial condition F_{0} in (4.2) is non-singular, i.e., $F_{0} \in \mathrm{GL}(n, \mathbb{R})^{7}, F$ satisfying

[^4](4.1) is a $\mathrm{GL}(n, \mathbb{R})$-valued function, that is, F is invertible for each point on U.

Proof. For each $\mathrm{P} \in U$, take a smooth path $\gamma(t):=\left(x^{1}(t), \ldots, x^{m}(t)\right)(0 \leqq t \leqq 1)$ with $\gamma(0)=\mathrm{P}_{0}$ and $\gamma(1)=\mathrm{P}$. Then the matrix-valued function $\hat{F}:=F \circ \gamma$ of one variable satisfies the ordinary differential equation

$$
\frac{d \hat{F}}{d t}=\hat{F} \hat{\Omega}, \quad \hat{\Omega}:=\sum_{l=1}^{m} \Omega_{l} \circ \gamma \frac{d x^{l}}{d t} .
$$

Hence $\varphi:=\operatorname{det} \hat{F}$ satisfies

$$
\frac{d \varphi}{d t}=\frac{d}{d t} \operatorname{det} \hat{F}=\operatorname{tr}\left(\tilde{\hat{F}} \frac{d \hat{F}}{d t}\right)=\operatorname{tr}(\tilde{\hat{F}} \hat{F} \hat{\Omega})=\operatorname{det} \hat{F} \operatorname{tr} \hat{\Omega}=\varphi \omega
$$

where $\widetilde{\hat{F}}$ denotes the cofactor matrix of \hat{F} and $\omega:=\operatorname{tr} \hat{\Omega}$. So

$$
\operatorname{det} \hat{F}(t)=\varphi(t)=\varphi_{0} \exp \int_{0}^{t} \omega(\tau) d \tau \quad\left(\varphi_{0}:=\operatorname{det} F_{0}\right)
$$

proving the lemma.
As seen in the previous lectures the following integrability condition holds:
Lemma 4.4. If a C^{∞}-map $F: U \rightarrow \mathrm{GL}(n, \mathbb{R})$ satisfies (4.1), then it hold on U that

$$
\begin{equation*}
\frac{\partial \Omega_{l}}{\partial x^{k}}-\frac{\partial \Omega_{k}}{\partial x^{l}}+\Omega_{k} \Omega_{l}-\Omega_{l} \Omega_{k}=O \quad(1 \leqq k<l \leqq m) . \tag{4.3}
\end{equation*}
$$

The integrability condition (4.3) guarantees existence of the solution of (4.1) as follows
Theorem 4.5. Let $\Omega_{l}: U \rightarrow \mathrm{M}_{m}(\mathbb{R})(l=1, \ldots, n)$ be C^{∞}-functions defined on a simply connected domain $U \subset \mathbb{R}^{n}$ satisfying (4.3) Then for each $\mathrm{P}_{0} \in U$ and $F_{0} \in \mathrm{M}_{m}(\mathbb{R})$, there exists the unique $m \times m$-matrix valued function $F: U \rightarrow \mathrm{M}_{m}(\mathbb{R})$ satisfying (4.1) and (4.2). Moreover,

- if $F_{0} \in \mathrm{GL}(m, \mathbb{R}), F(\mathrm{P}) \in \mathrm{GL}(m, \mathbb{R})$ holds on U,
- if $F_{0} \in \mathrm{SO}(m)$ and Ω_{l} 's are skew-symmetric matrices, $F(\mathrm{P}) \in \mathrm{SO}(m)$ holds on U.

Coordinate-free expressions Let $\Omega_{l}: U \rightarrow \mathrm{M}_{n}(\mathbb{R})(l=1, \ldots, m)$ be C^{∞}-functions defined on a domain $U \subset \mathbb{R}^{m}$, and define $n \times n$-matrix Ω of 1 -forms as

$$
\Omega=\left(\begin{array}{cccc}
\omega_{1}^{1} & \omega_{2}^{1} & \ldots & \omega_{n}^{1} \tag{4.4}\\
\omega_{1}^{2} & \omega_{2}^{2} & \ldots & \omega_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{1}^{n} & \omega_{2}^{n} & \ldots & \omega_{n}^{n}
\end{array}\right):=\sum_{l=1}^{m} \Omega_{l} d x^{l}=\left(\begin{array}{cccc}
\sum \omega_{l, 1}^{1} d x^{l} & \sum \omega_{l, 2}^{1} d x^{l} & \ldots & \sum \omega_{l, n}^{1} d x^{l} \\
\sum \omega_{l, 1}^{l} d x^{l} & \sum \omega_{l, 2}^{2} d x^{l} & \ldots & \sum \omega_{l, n}^{2} d x^{l} \\
\vdots & \vdots & \ddots & \vdots \\
\sum \omega_{l, 1}^{n} d x^{l} & \sum \omega_{l, 2}^{n} d x^{l} & \ldots & \sum \omega_{l, n}^{n} d x^{l}
\end{array}\right),
$$

where $\Omega_{l}=\left(\omega_{l, j}^{i}\right)$. Then Ω is considered as a $\mathrm{M}_{n}(\mathbb{R})$-valued 1-form, and (4.1) is restated as

$$
\begin{equation*}
d F=F \Omega . \tag{4.5}
\end{equation*}
$$

Lemma 4.6. Under the situation above, the integrability condition (4.3) is equivalent to

$$
\begin{equation*}
d \Omega+\Omega \wedge \Omega=O, \quad \text { where } \quad \Omega \wedge \Omega=\left(\sum_{k=1}^{n} \omega_{k}^{i} \wedge \omega_{j}^{k}\right)_{i, j=1, \ldots, n} \tag{4.6}
\end{equation*}
$$

Proof. Assume F be a solution of (4.5) with $F \in \mathrm{GL}(n, \mathbb{R})$. Then

$$
O=d d F=d(F \Omega)=d F \wedge \Omega+F d \Omega=F(\Omega \wedge \Omega+d \Omega)
$$

Thus, by using differential forms, we can state the system of partial differential equations (4.1) and its integrability condition (4.3) in coordinate-free form. The proof of Theorem 4.5 works not only simply connected domain $U \subset \mathbb{R}^{m}$ but also simply connected m-manifold, and thus, we have

Theorem 4.7. Let Ω be an $\mathrm{M}_{n}(\mathbb{R})$-valued 1 -form on a simply connected m-manifold M satisfying (4.6). Then for each $\mathrm{P}_{0} \in M$ and $F_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique $n \times n$-matrix valued function $F: M \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfying (4.5) with $F(\mathrm{P})=F_{0}$. Moreover,

- if $F_{0} \in \mathrm{GL}(n, \mathbb{R}), F(\mathrm{P}) \in \mathrm{GL}(n, \mathbb{R})$ holds on M,
- if $F_{0} \in \mathrm{SO}(n)$ and Ω is skew-symmetric, $F(\mathrm{P}) \in \mathrm{SO}(n)$ holds on M.

When $n=1$, that is, Ω is a usual 1-form, $\Omega \wedge \Omega$ always vanishes, and the integrability condition (4.6) is simply $d \Omega=0$. Then we have the following Poncaré's lemma ${ }^{8}$.

Theorem 4.8 (Poincaré's lemma). If a differential 1-form ω defined on a simply connected and connected m-manifold M is closed, that is, $d \omega=0$ holds, then there exists a C^{∞}-function f on M such that $d f=\omega$. Such a function f is unique up to additive constants.
Proof. Since ω is closed, there exists a function F on M satisfying $d F=F \omega$ with initial condition $F\left(\mathrm{P}_{0}\right)=1$. By Lemma 4.3, F does not vanish on M, that is, $F>0$. Hence $f:=\log F$ is a smooth function on M satisfying $d f=d F / F=F \omega / F=\omega$. Take another function g on M satisfying $d g=\omega, d(f-g)=0$ holds. Then connectedness of M infers that $f-g$ is constant.

4.3 Curvature form

Let U be a domain of n-dimensional Riemannian manifold (M, g). We let Ω be the connection form with respect to an orthonormal frame $\left[e_{1}, \ldots, e_{n}\right]$ on U, as defined in Definition 3.15.
Definition 4.9. We define a skew-symmetric matrix-valued 2-form by $K:=d \Omega+\Omega \wedge \Omega$ and call the curvature form with respect to the frame $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$.

Take an orthonormal frame $\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$ on U and take a gauge transformation $\Theta: U \rightarrow \mathrm{O}(n)$:

$$
\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \Theta
$$

Denoting the connection form and the curvature form with respect to $\left[\boldsymbol{v}_{j}\right]$ by $\widetilde{\Omega}$ and \widetilde{K}. Then
Proposition 4.10. (1) $\Omega=\Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \Theta$, (2) $K=\Theta^{-1} \widetilde{K} \Theta$.
Proof. Since

$$
\begin{aligned}
{\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \Omega } & =\nabla\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\nabla\left(\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \Theta\right)=\nabla\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \Theta+\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] d \Theta \\
& =\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \widetilde{\Omega} \Theta+\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] d \Theta=\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \Theta^{-1}(\widetilde{\Omega} \Theta+d \Theta)
\end{aligned}
$$

the first assertion is obtained. Next, noticing $d(\widetilde{\Omega} \Theta)=(d \widetilde{\Omega}) \Theta-\widetilde{\Omega} \wedge d \Theta, \widetilde{\Omega} \Theta^{-1} \wedge \Theta \widetilde{\Omega}=\widetilde{\Omega} \wedge \widetilde{\Omega}$, and so on, we have

$$
\begin{aligned}
d \Omega & +\Omega \wedge \Omega=d\left(\Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \Theta\right)+\left(\Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \Theta\right) \wedge\left(\Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \Theta\right) \\
= & -\Theta^{-1} d \Theta \Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \widetilde{\Omega} \Theta-\Theta^{-1} \widetilde{\Omega} \wedge d \Theta-\Theta^{-1} d \Theta \Theta^{-1} \wedge d \Theta \\
& +\Theta^{-1} \widetilde{\Omega} \Theta \wedge \Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} d \Theta \wedge \Theta^{-1} \widetilde{\Omega} \Theta+\Theta^{-1} \widetilde{\Omega} \Theta \wedge \Theta^{-1} d \Theta+\Theta^{-1} d \Theta \wedge \Theta^{-1} d \Theta \\
= & \Theta^{-1}(d \widetilde{\Omega}+\widetilde{\Omega} \wedge \widetilde{\Omega}) \Theta
\end{aligned}
$$

proving (2).

[^5]The goal of this section is to prove the following
Theorem 4.11. Let U be a domain of a Riemannian n-manifold (M, g) and K the curvature form with respect to an orthonormal frame $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ on U. For a point $\mathrm{P} \in U$, there exists a local coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ around P such that $\left[\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right]$ is an orthonormal frame if and only if K vanishes on a neighborhood of P .

Remark 4.12. By (2) of Proposition 4.10, the condition $K=0$ does not depend on choice of orthonormal frames. A Riemannian manifold (M, g) said to be flat if $K=0$ holds on M.

Proof of Theorem 4.11. First, we shall show the "only if" part: Let $\left(x^{1}, \ldots, x^{n}\right)$ be a coordinate system such that $\left[\boldsymbol{e}_{j}:=\partial / \partial x^{j}\right]$ is an orthonormal frame. Since

$$
\left[\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right]=\left[\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right]=\mathbf{0}
$$

Proposition 4.2 yields that all components of the connection forms ω_{i}^{j} vanish. Hene we have $K=0$.
Conversely, assume $K=0$ for an orthonormal frame $\left[\boldsymbol{e}_{j}\right]$. Since the connection form Ω satisfies $d \Omega+\Omega \wedge \Omega=O$, there exists a matrix-valued function $\Theta: V \rightarrow \mathrm{SO}(n)$ satisfying $d \Theta=\Theta \Omega$, $\Theta(\mathrm{P})=$ id on a sufficiently small neighborhood V of P , because of Theorem 4.5. Take a new orthonormal frame $\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]:=\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \Theta^{-1}$. Then by (1) of Proposition 4.10, the connection form $\widetilde{\Omega}=\left(\tilde{\omega}_{i}^{j}\right)$ with respect to $\left[\boldsymbol{v}_{j}\right]$ vanishes identically. So by Lemma $3.17, d \omega^{i}=0$ holds for $i=1, \ldots, n$. Hence by the Poincaré Lemma (Theorem 4.8), there exists a smooth functions on a neighborhood V of P . Such $\left(x^{1}, \ldots, x^{n}\right)$ is a desired coordinate system if V is sufficiently small.

Exercises

4-1 Consider a Riemannian metric

$$
g=d r^{2}+\{\varphi(r)\}^{2} d \theta^{2} \quad \text { on } \quad U:=\left\{(r, \theta) ; 0<r<r_{0},-\pi<\theta<\pi\right\}
$$

where $r_{0} \in(0,+\infty]$ and φ is a positive smooth function defined on $\left(0, r_{0}\right)$ with

$$
\lim _{r \rightarrow+0} \varphi(r)=0, \quad \lim _{r \rightarrow+0} \varphi^{\prime}(r)=1
$$

Find a function φ such that (U, g) is flat. (Hint: $[\partial / \partial r,(1 / \varphi) \partial / \partial \theta)]$ is an orthonormal frame.)
4-2 Compute the curvature form of $H^{2}(-1)$ with respect to an orthonormal frame $\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ as in Exercise 3-2.

5 The Sectional Curvature

5.1 Preliminaries

Exterior products of tangent vectors. Let V be an n-dimensional vector space $(1 \leqq n<\infty)$ and denote by V^{*} its dual. Then $\left(V^{*}\right)^{*}$ can be naturally identified with V itself. In fact,

$$
I: V \ni \boldsymbol{v} \longmapsto I \boldsymbol{v} \in\left(V^{*}\right)^{*}:=\left\{A: V^{*} \rightarrow \mathbb{R} ; \text { linear }\right\}, \quad I \boldsymbol{v}(\alpha):=\alpha(\boldsymbol{v})
$$

is a linear map with trivial kernel. Then I is an isomorphism because $\operatorname{dim}\left(V^{*}\right)^{*}=\operatorname{dim} V$.
We denote by $\wedge^{2} V:=\wedge^{2}\left(V^{*}\right)^{*}$ the set of skew-symmetric bilinear forms on V^{*}. For vectors \boldsymbol{v}, $\boldsymbol{w} \in V$, the exterior product of them is an element of $\wedge^{2} V$ defined as

$$
(\boldsymbol{v} \wedge \boldsymbol{w})(\alpha, \beta):=\alpha(\boldsymbol{v}) \beta(\boldsymbol{w})-\alpha(\boldsymbol{w}) \beta(\boldsymbol{v}) \quad\left(\alpha, \beta \in V^{*}\right)
$$

For a basis $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ on V,

$$
\begin{equation*}
\left\{\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j} ; 1 \leqq i<j \leqq n\right\} \tag{5.1}
\end{equation*}
$$

is a basis of $\wedge^{2} V$. In particular $\operatorname{dim} \wedge^{2} V=\frac{1}{2} n(n-1)$. When V is a vector space endowed with an inner product \langle,$\rangle and \left[e_{1}, \ldots, e_{n}\right]$ is an orthonormal basis, there exists the unique inner product, which is also denoted by \langle,$\rangle , of \wedge^{2} V$ such that (5.1) is an orthonormal basis. This definition of the inner product does not depend on choice of orthonormal bases of V. In fact, take another orthonormal basis $\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$ related with $\left[\boldsymbol{e}_{j}\right]$ by

$$
\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \Theta \quad \Theta=\left(\theta_{i}^{j}\right) \in \mathrm{O}(n)
$$

Since $\Theta^{T}=\Theta^{-1},\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]=\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right] \Theta^{T}$ holds. Hence

$$
\boldsymbol{v}_{s} \wedge \boldsymbol{v}_{t}=\left(\sum_{i} \theta_{s}^{i} \boldsymbol{e}_{i}\right) \wedge\left(\sum_{j} \theta_{t}^{j} \boldsymbol{e}_{j}\right)=\sum_{i, j} \theta_{i}^{s} \theta_{j}^{t}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}\right)=\sum_{i<j}\left(\theta_{i}^{s} \theta_{j}^{t}-\theta_{j}^{s} \theta_{i}^{t}\right)\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}\right)
$$

and so

$$
\begin{aligned}
\left\langle\boldsymbol{v}_{s} \wedge \boldsymbol{v}_{t}, \boldsymbol{v}_{u} \wedge \boldsymbol{v}_{v}\right\rangle & =\sum_{i<j, k<l}\left(\theta_{i}^{s} \theta_{j}^{t}-\theta_{j}^{s} \theta_{i}^{t}\right)\left(\theta_{k}^{u} \theta_{l}^{v}-\theta_{l}^{u} \theta_{k}^{v}\right)\left\langle\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}, \boldsymbol{e}_{k} \wedge \boldsymbol{e}_{l}\right\rangle \\
& =\sum_{i<j, k<l}\left(\theta_{i}^{s} \theta_{j}^{t}-\theta_{j}^{s} \theta_{i}^{t}\right)\left(\theta_{k}^{u} \theta_{l}^{v}-\theta_{l}^{u} \theta_{k}^{v}\right) \delta_{i k} \delta_{j l}=\sum_{i<j}\left(\theta_{i}^{s} \theta_{j}^{t}-\theta_{j}^{s} \theta_{i}^{t}\right)\left(\theta_{i}^{u} \theta_{j}^{v}-\theta_{j}^{u} \theta_{i}^{v}\right) \\
& =\sum_{i<j}\left(\theta_{i}^{s} \theta_{j}^{t} \theta_{i}^{u} \theta_{j}^{v}-\theta_{j}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{j}^{v}-\theta_{i}^{s} \theta_{j}^{t} \theta_{j}^{u} \theta_{i}^{v}+\theta_{j}^{s} \theta_{i}^{t} \theta_{j}^{u} \theta_{i}^{v}\right) \\
& =\sum_{i<j} \theta_{i}^{s} \theta_{j}^{t} \theta_{i}^{u} \theta_{j}^{v}+\sum_{i<j} \theta_{j}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{j}^{v}-\sum_{i>j} \theta_{j}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{j}^{v}+\sum_{i>j} \theta_{i}^{s} \theta_{j}^{t} \theta_{i}^{u} \theta_{j}^{v} \\
& =\sum_{i \neq j} \theta_{i}^{s} \theta_{j}^{t} \theta_{i}^{u} \theta_{j}^{v}-\sum_{i \neq j} \theta_{j}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{j}^{v} \\
& =\sum_{i, j}\left(\theta_{i}^{s} \theta_{j}^{t} \theta_{i}^{u} \theta_{j}^{v}-\theta_{j}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{j}^{v}\right)-\sum_{i}\left(\theta_{i}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{i}^{v}-\theta_{i}^{s} \theta_{i}^{t} \theta_{i}^{u} \theta_{i}^{v}\right) \\
& =\delta^{s u} \delta^{t v}-\delta^{t u} \delta^{s v}
\end{aligned}
$$

because $\sum_{i} \theta_{i}^{s} \theta_{i}^{t}=\delta^{s t}$. So, if $s<t$ and $u<v$, the second term of the right-hand side vanishes. That is, $\left\{\boldsymbol{v}_{s} \wedge \boldsymbol{v}_{t} ; s<t\right\}$ is an orthonormal basis as well as $\left\{\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j} ; i<j\right\}$ is.
12. July, 2023. xRevised: 18. July, 2023

Symmetric bilinear forms. Let V be a real vector space. A bilinear map $q: V \times V \rightarrow \mathbb{R}$ is said to be symmetric if $q(\boldsymbol{v}, \boldsymbol{w})=q(\boldsymbol{w}, \boldsymbol{v})$ for all $\boldsymbol{v}, \boldsymbol{w} \in V$.
Lemma 5.1. Two symmetric bilinear forms q and q^{\prime} coincide with each other if and only if $q(\boldsymbol{v}, \boldsymbol{v})=q^{\prime}(\boldsymbol{v}, \boldsymbol{v})$ hold for all $\boldsymbol{v} \in V$.

Proof. By symmetricity, $q(\boldsymbol{v}, \boldsymbol{w})=\frac{1}{2}(q(\boldsymbol{v}+\boldsymbol{w}, \boldsymbol{v}+\boldsymbol{w})-q(\boldsymbol{v}, \boldsymbol{v})-q(\boldsymbol{w}, \boldsymbol{w}))$ holds.

5.2 Sectional Curvature

Let U be a domain on a Riemannian n-manifold (M, g), and $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ an orthonormal frame on U. Denote by $\left(\omega^{j}\right)_{j=1, \ldots, n}, \Omega=\left(\omega_{i}^{j}\right)_{i, j=1, \ldots, n}$ and $K=\left(\kappa_{i}^{j}\right)_{i=1, \ldots, n}:=d \Omega+\Omega \wedge \Omega$ the dual frame, the connection form and the curvature form with respect to the frame $\left[\boldsymbol{e}_{j}\right]$. Then Lemma 3.17 and Definition 4.9, we have

$$
\begin{equation*}
d \omega^{j}=\sum_{l} \omega^{l} \wedge \omega_{l}^{j}, \quad \kappa_{i}^{j}=d \omega_{i}^{j}+\sum_{l} \omega_{l}^{j} \wedge \omega_{i}^{l} \tag{5.2}
\end{equation*}
$$

Since Ω is a one form valued in the skew-symmetric matrices, so is K :

$$
\begin{equation*}
\omega_{i}^{j}=-\omega_{j}^{i}, \quad \kappa_{i}^{j}=-\kappa_{j}^{i} . \tag{5.3}
\end{equation*}
$$

Proposition 5.2 (The first Bianchi identity). $\kappa_{j}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)+\kappa_{k}^{i}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{j}\right)+\kappa_{l}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)=0$.
Proof. By (5.2) and (3.11),

$$
\begin{aligned}
0 & =d d \omega^{i}=d\left(\sum_{s} \omega^{s} \wedge \omega_{s}^{i}\right)=\sum_{s}\left(d \omega^{s} \wedge \omega_{s}^{i}-\omega^{s} \wedge \omega_{s}^{i}\right) \\
& =\sum_{s}\left(\sum_{m}\left(\omega^{m} \wedge \omega_{m}^{s}\right) \wedge \omega_{s}^{i}-\omega^{s} \wedge\left(\kappa_{s}^{i}-\sum_{m} \omega_{m}^{i} \wedge d \omega_{s}^{m}\right)\right) \\
& =\sum_{s, m} \omega^{m} \wedge \omega_{m}^{s} \wedge \omega_{s}^{i}+\sum_{s, m} \omega^{s} \wedge \omega_{m}^{i} \wedge \omega_{s}^{m}-\sum_{s} \omega^{s} \wedge \kappa_{s}^{i} \\
& =\sum_{s, m} \omega^{m} \wedge\left(\omega_{m}^{s} \wedge \omega_{s}^{i}+\omega_{s}^{i} \wedge \omega_{m}^{s}\right)-\sum_{s} \omega^{s} \wedge \kappa_{s}^{i}=-\sum_{s} \omega^{s} \wedge \kappa_{s}^{i}
\end{aligned}
$$

Hence

$$
\begin{aligned}
0 & =\sum_{s}\left(\omega^{s} \wedge \kappa_{s}^{i}\right)\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)=\sum_{s}\left(\omega^{s}\left(\boldsymbol{e}_{j}\right) \kappa_{s}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)+\omega^{s}\left(\boldsymbol{e}_{k}\right) \kappa_{s}^{i}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{j}\right)+\omega^{s}\left(\boldsymbol{e}_{l}\right) \kappa_{s}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)\right) \\
& =\sum_{s}\left(\delta_{j}^{s} \kappa_{s}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)+\delta_{k}^{s} \kappa_{s}^{i}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{j}\right)+\delta_{l}^{s} \kappa_{s}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)\right) \\
& =\kappa_{j}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)+\kappa_{k}^{i}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{j}\right)+\kappa_{l}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)
\end{aligned}
$$

proving the assertion.
Corollary 5.3. $\kappa_{j}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)=\kappa_{l}^{k}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)$.
Proof. By Proposition 5.2,

$$
\begin{aligned}
\kappa_{j}^{i}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)+\kappa_{k}^{i}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{j}\right)+\kappa_{l}^{i}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right) & =0 \\
\kappa_{k}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)+\kappa_{i}^{j}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{k}\right)+\kappa_{l}^{j}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{i}\right) & =0 \\
\kappa_{i}^{k}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{l}\right)+\kappa_{j}^{k}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{i}\right)+\kappa_{l}^{k}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right) & =0
\end{aligned}
$$

Summing up these and noticing $\kappa_{i}^{j}=-\kappa_{j}^{i}$, we have the conclusion.

A quadratic form induced from the curvature form. We fix a point $p \in U$. Under the notation above, we can define a bilinear map

$$
\begin{equation*}
\boldsymbol{K}(\boldsymbol{\xi}, \boldsymbol{\eta}):=\sum_{i<j, k<l} \kappa_{i}^{j}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right) \xi^{k l} \eta^{i j}, \quad \boldsymbol{\xi}=\sum_{k<l} \xi^{k l} \boldsymbol{e}_{k} \wedge \boldsymbol{e}_{l}, \quad \boldsymbol{\eta}=\sum_{i<j} \eta^{i j} \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j} \tag{5.4}
\end{equation*}
$$

on $\wedge^{2} T_{p} M$, where $\boldsymbol{e}_{j}, \kappa_{i}^{j} \ldots$ are considered tangent vectors, 2 -forms at the fixed point p. In fact, one can show that the definition (5.4) is independent of choice of orthonormal frames. As a immediate conclusion of Corollary 5.3, we have

Lemma 5.4. K is symmetric.
Hence, taking Lemma 5.1 into an account, we define the sectional curvature as follows:
Definition 5.5. Let $\Pi_{p} \subset T_{p} M$ be a 2-dimensional linear subspace in $T_{p} M$. The sectional curvature of (M, g) with respect to the plane Π_{p} is a number

$$
K\left(\Pi_{p}\right):=\boldsymbol{K}(\boldsymbol{v} \wedge \boldsymbol{w}, \boldsymbol{v} \wedge \boldsymbol{w})
$$

where $\{\boldsymbol{v}, \boldsymbol{w}\}$ is an orthonormal basis of Π_{p}
Remark 5.6. For (not necessarily orthonormal) basis $\{\boldsymbol{x}, \boldsymbol{y}\}$ of Π_{p}, the sectional curvature is expressed as

$$
K\left(\Pi_{p}\right)=\frac{\boldsymbol{K}(\boldsymbol{x} \wedge \boldsymbol{y}, \boldsymbol{x} \wedge \boldsymbol{y})}{\langle\boldsymbol{x} \wedge \boldsymbol{y}, \boldsymbol{x} \wedge \boldsymbol{y}\rangle}
$$

where \langle,$\rangle of the right-hand side is the inner product of \wedge^{2} T_{p} M$ induced from the Riemannian metric.
Remark 5.7. The sectional curvature is a scalar corresponding to a 2-plane in the tangent space $T_{p} M$. Hence it can be considered as a function of 2-Grassmannian bundle induced from the tangent bundle $T M$.

5.3 Curvature Tensor

Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita connection. Define a trilinear map (5.5)

$$
R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y, Z) \mapsto R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \in \mathfrak{X}(M)
$$

By the properties Lemma 3.6 of the connection and the property (3.4) of the Lie bracket, the following Lemma is obvious.

Lemma 5.8. For any function $f \in \mathcal{F}(M)$ and vector fields $X, Y, Z \in \mathfrak{X}(M)$,

$$
R(f X, Y) Z=R(X, f Y) Z=R(X, Y)(f Z)=f R(X, Y) Z
$$

holds.
Corollary 5.9. Assume the vector fields X, Y, Z and $\widetilde{X}, \widetilde{Y}, \widetilde{Z} \in \mathfrak{X}(M)$ satisfy $X_{p}=\widetilde{X}_{p}, Y_{p}=\widetilde{Y}_{p}$ and $Z_{p}=\widetilde{Z}_{p}$ for a point $p \in M$. Then

$$
(R(X, Y) Z)_{p}=(R(\widetilde{X}, \widetilde{Y}) \widetilde{Z})_{p}
$$

In other words, R in (5.5) induces a trilinear map

$$
R_{p}: T_{p} M \times T_{p} M \times T_{p} M \rightarrow T_{p} M
$$

Definition 5.10. A trilinear map $R(X, Y) Z$ is called the curvature tensor of (M, g). In addition, a quadrilinear map

$$
R(X, Y, Z, T)=\langle R(X, Y) Z, T\rangle: \mathfrak{X}(M)^{4} \rightarrow \mathcal{F}(M)
$$

is also called the curvature tensor. In fact, $R \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes T^{*} M \otimes T^{*} M\right)$, that is R is (0,4)-tensor field, because R induces a quadrilinear map

$$
R:\left(T_{p} M\right)^{4} \rightarrow \mathbb{R}
$$

for each $p \in M$.
Lemma 5.11. Let $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ be an orthonormal frame on a domain $U \subset M$, and $K=\left(\kappa_{i}^{j}\right)$ the curvature form with respect to the frame. Then it holds that

$$
\kappa_{i}^{j}(X, Y)=R\left(X, Y, \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)
$$

for each (i, j).
So by (5.3), Proposition 5.2, Corollary 5.3 yield
Proposition 5.12. - $R(X, Y, Z, T)=-R(Y, X, Z, T)=-R(X, Y, T, Z)$,

- $R(X, Y, Z, T)+R(Y, Z, X, T)+R(Z, X, Y, T)=0$,
- $R(X, Y, Z, T)=R(Z, T, X, Y)$.

Moreover, the sectional curvature $K\left(\Pi_{p}\right)$ in Definition 5.5 is computed by

$$
\begin{equation*}
K\left(\Pi_{p}\right)=\frac{R(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{y}, \boldsymbol{x})}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle\langle\boldsymbol{y}, \boldsymbol{y}\rangle-\langle\boldsymbol{x}, \boldsymbol{y}\rangle^{2}} \tag{5.6}
\end{equation*}
$$

Exercises

5-1 Consider a Riemannian metric

$$
g=d r^{2}+\{\varphi(r)\}^{2} d \theta^{2} \quad \text { on } \quad U:=\left\{(r, \theta) ; 0<r<r_{0},-\pi<\theta<\pi\right\}
$$

where $r_{0} \in(0,+\infty]$ and φ is a positive smooth function defined on $\left(0, r_{0}\right)$ with

$$
\lim _{r \rightarrow+0} \varphi(r)=0, \quad \lim _{r \rightarrow+0} \frac{\varphi(r)}{r}=1
$$

Classify the function φ so that g is of constant sectional curvature.
5-2 Let $M \subset \mathbb{R}^{n+1}$ be an embedded submanifold endowed with the Riemannian metric induced from the canonical Euclidean metric of \mathbb{R}^{n+1}. Then the position vector $\boldsymbol{x}(p)$ of $p \in M$ induces a smooth map

$$
\boldsymbol{x}: M \ni p \longmapsto \boldsymbol{x}(p) \in \mathbb{R}^{n+1}
$$

which is an $(n+1)$-tuple of C^{∞}-functions. Let $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ be an orthonormal frame defined on a domain $U \subset M$. Since $T_{p} M \subset \mathbb{R}^{n+1}$, we can consider that \boldsymbol{e}_{j} is a smooth map from $U \rightarrow \mathbb{R}^{n+1}$. Take a dual basis $\left(\omega^{j}\right)$ to $\left[\boldsymbol{e}_{j}\right]$. Prove that

$$
d \boldsymbol{x}=\sum_{j=1}^{n} \boldsymbol{e}_{j} \omega^{j}
$$

holds on U. Here, we regard that $d \boldsymbol{x}$ is an $(n+1)$-tuple of differential forms and \boldsymbol{e}_{j} is an \mathbb{R}^{n+1}-valued function for each j.

$6 \quad$ Space forms

6.1 Constant sectional curvature

Let (M, g) be a Riemannian n-manifold, and let

$$
\begin{aligned}
\operatorname{Gr}_{2}(T M):= & \cup_{p} \operatorname{Gr}_{2}\left(T_{p} M\right) \\
& \operatorname{Gr}_{2}\left(T_{p} M\right):=2 \text {-Grassmannian of } T_{p} M=\left\{\Pi_{p} \subset T_{p} M ; \text { 2-dimensional subspace }\right\} .
\end{aligned}
$$

The sectional curvature defined in Definition 5.5 is a map $K: \operatorname{Gr}_{2}(T M) \rightarrow \mathbb{R}$ such that

$$
K\left(\Pi_{p}\right):=\boldsymbol{K}(\boldsymbol{v} \wedge \boldsymbol{w}, \boldsymbol{v} \wedge \boldsymbol{w})
$$

where $\{\boldsymbol{v}, \boldsymbol{w}\}$ is the orthonormal basis of Π_{p}.
Fix a point p, and take an orthornormal frame $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ defined on a neighborhood U of p. Denote by $\left(\omega^{j}\right), \Omega=\left(\omega_{i}^{j}\right)$ and $K=\left(\kappa_{i}^{j}\right)$ the dual frame, the connection form and the curvature form with respect to the frame $\left[\boldsymbol{e}_{j}\right]$, respectively.
Theorem 6.1. Assume there exists a real number k such that $K\left(\Pi_{p}\right)=k$ for all 2-dimensional subspace $\Pi_{p} \in T_{p} M$ for a fixed p. Then the curvature form is expressed as

$$
\kappa_{j}^{i}=k \omega^{i} \wedge \omega^{j}
$$

Conversely, the curvature form is written as above, the sectional curvature at p is constant k.
Proof. By the assumption, $k=K\left(\operatorname{Span}\left\{\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\}\right)=\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}\right)=\kappa_{j}^{i}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)$. Let

$$
\boldsymbol{v}:=\cos \theta \boldsymbol{e}_{i}+\sin \theta \boldsymbol{e}_{j}, \quad \boldsymbol{w}:=\cos \varphi \boldsymbol{e}_{l}+\sin \varphi \boldsymbol{e}_{m}
$$

where $\{i, j\} \neq\{l, m\}$, and set $\Pi_{\theta, \varphi}:=\operatorname{Span}\{\boldsymbol{v}, \boldsymbol{w}\} \subset T_{p} M$. Then by biliniearity of the \wedge-product on $T_{p} M$, it holds that

$$
\boldsymbol{v} \wedge \boldsymbol{w}=\cos \theta \cos \varphi \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}+\cos \theta \sin \varphi \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}+\sin \theta \cos \varphi \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}+\sin \theta \sin \varphi \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}
$$

Since $\{\boldsymbol{v}, \boldsymbol{w}\}$ is an orthonormal basis of $\Pi_{\theta, \varphi}$, biliniearity and symmetricity of \boldsymbol{K} implies

$$
\begin{align*}
k= & K\left(\Pi_{\theta, \varphi}\right)=\boldsymbol{K}(\boldsymbol{v} \wedge \boldsymbol{w}, \boldsymbol{v} \wedge \boldsymbol{w}) \tag{6.1}\\
= & \cos ^{2} \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}\right)+\cos ^{2} \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}\right) \\
& +\sin ^{2} \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)+\sin ^{2} \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right) \\
& +2 \cos ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}\right)+2 \cos \theta \sin \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right) \\
& +2 \cos \theta \sin \theta \cos \varphi \sin \varphi\left(\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)\right) \\
& +2 \cos \theta \sin \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+2 \sin ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right) \\
= & k+2\left(\cos ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}\right)+\cos \theta \sin \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)\right. \\
& +\cos \theta \sin \theta \cos \varphi \sin \varphi\left(\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)\right) \\
& \left.+\cos \theta \sin \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\sin ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)\right)
\end{align*}
$$

So, by letting $\theta=0$, we have

$$
\begin{equation*}
\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}\right)=0 \tag{6.2}
\end{equation*}
$$

Similarly, letting $\theta=\pi / 2, \varphi=0$ and $\varphi=\pi / 2$, we have $\boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)=\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)=$ $\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)=0$. Hence the equality (6.1) implies

$$
\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)=0
$$

25. July, 2022.

By definition (5.4), this is equivalent to

$$
\kappa_{j}^{m}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)+\kappa_{j}^{l}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{m}\right)=-\left(\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)+\kappa_{l}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{m}\right)\right) .
$$

Then by Proposition 5.2, we have

$$
0=\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)+\kappa_{l}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{m}\right)=\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)-\kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)-\kappa_{m}^{j}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{i}\right)=2 \kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)-\kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)
$$

Exchanging the roles of i and m, it holds that $2 \kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)-\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)=0$. So we have

$$
\begin{equation*}
\kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)=0 \quad(\text { if }\{i, j\} \neq\{m, l\}) \tag{6.3}
\end{equation*}
$$

On the other hand, (6.2) means that $\kappa_{i}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)=\kappa_{i}^{j}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{l}\right)=0$ when $l \neq i, j$. Summing up, we have

$$
\kappa_{i}^{j}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)= \begin{cases}k & (i, j)=(k, l) \\ 0 & \text { otherwise }\end{cases}
$$

proving the theorem.
We now consider the case that the assumption of Theorem 6.1 holds for each $p \in M$.
Theorem 6.2. Assume that for each p, there exists a real number $k(p)$ such that $K\left(\Pi_{p}\right)=k(p)$ for any $\Pi_{p} \in \operatorname{Gr}_{2}\left(T_{p} M\right)$. Then the function $k: M \ni p \rightarrow k(p) \in \mathbb{R}$ is constant provided that M is connected.

Proof. By taking the exterior derivative of $\kappa_{i}^{j}=d \omega_{i}^{j}+\sum_{s} \omega_{s}^{j} \wedge \omega_{i}^{s}$, it holds that

$$
\begin{aligned}
d \kappa_{i}^{j} & =d\left(d \omega_{i}^{j}\right)+\sum_{s} \omega_{s}^{j} \wedge d \omega_{i}^{s}-\sum_{s} d \omega_{s}^{j} \wedge \omega_{i}^{s} \\
& =\sum_{s}\left(\kappa_{s}^{j}-\sum_{t} \omega_{t}^{j} \wedge \omega_{s}^{t}\right) \wedge \omega_{i}^{s}-\sum_{s} \omega_{s}^{j} \wedge\left(\kappa_{i}^{s}-\sum_{t} \omega_{t}^{s} \wedge \omega_{i}^{t}\right)
\end{aligned}
$$

and hence we have the identity

$$
\begin{equation*}
d \kappa_{i}^{j}=\sum_{s}\left(\kappa_{s}^{j} \wedge \omega_{i}^{s}-\omega_{s}^{j} \wedge \kappa_{i}^{s}\right), \tag{6.4}
\end{equation*}
$$

which is known as the second Bianchi identity. By our assumption, Theorem 6.1 implies that $\kappa_{i}^{j}=k \omega^{i} \wedge \omega^{j}$. Then by Lemma 3.17,

$$
\begin{aligned}
d \kappa_{i}^{j} & =d\left(k \omega^{i}\right) \wedge \omega^{j}-k \omega^{i} \wedge d \omega^{j}=d k \wedge \omega^{i} \wedge \omega^{j}+k d \omega^{i} \wedge \omega^{j}-k \omega^{i} \wedge d \omega^{j} \\
& =d k \wedge \omega^{i} \wedge \omega^{j}+\sum_{s} k \omega^{s} \wedge \omega_{s}^{i} \wedge \omega^{j}-\sum_{s} k \omega^{i} \wedge \omega^{s} \wedge \omega_{s}^{j}=d k \wedge \omega^{i} \wedge \omega^{j}+d \kappa_{i}^{j}
\end{aligned}
$$

holds for each i and j. Thus, $d k \wedge \omega^{i} \wedge \omega^{j}=0$ for all i and j, which implies $d k=0$. This equality is independent of choice of orthonormal frames. Since M is connected, k is constant.

6.2 Space forms

Let (M, g) be a Riemannian n-manifold. A path $\gamma:[0,+\infty) \rightarrow M$ is said to be a divergence path if for any compact subset $K \in M$, there exists $t_{0} \in(0,+\infty)$ such that $\gamma\left(\left[t_{0},+\infty\right)\right) \subset M \backslash K$. If any divergent path has infinite length, (M, g) is said to be complete. ${ }^{9}$ In particular, a compact Riemannian manifold without boundary is automatically complete.

[^6]Definition 6.3. An n-dimensional space form is a complete Riemannian n-manifold of constant sectional curvature.

Example 6.4. The Euclidean n-space is a space form of constant sectional curvature 0 . In fact, let $\left(x^{1}, \ldots, x^{n}\right)$ be the canonical Cartesian coordinate system and set $\boldsymbol{e}_{j}=\partial / \partial x^{j}$. Then [\boldsymbol{e}_{j}] is an orthornormal frame defined on the entire \mathbb{R}^{n}, and Propositions 4.1 and 4.2 implies that the connection form $\omega_{j}^{i}=0$. Hence the curvature forms vanish, and then the sectional curvature is identically zero.

So it is sufficient to show completeness. Let $\gamma:[0,+\infty) \rightarrow \mathbb{R}^{n}$ be a divergent path. Then for each $r>0$, there exists $t_{0}>0$ such that $|\gamma(t)|>r$ holds on $\left[t_{0},+\infty\right)$, equivalently, $|\gamma(t)| \rightarrow+\infty$ as $t \rightarrow+\infty$. So the length L of the curve γ is

$$
L=\lim _{t \rightarrow+\infty} \int_{0}^{t}|\dot{\gamma}(\tau)| d \tau \geqq \lim _{t \rightarrow+\infty}\left|\int_{0}^{t} \dot{\gamma}(\tau) d \tau\right|=\lim _{t \rightarrow+\infty}|\gamma(t)-\gamma(0)| \geqq \lim _{t \rightarrow+\infty}|\gamma(t)|-|\gamma(0)|=+\infty
$$

Here, we used the triangle inequality of integrals for vector-valued functions ${ }^{10}$.

6.3 The Hyperbolic spaces

Let $H^{n}\left(-c^{2}\right)$ be the hyperbolic n-space defined, where c is a non-zero constant:

$$
H^{n}\left(-c^{2}\right):=\left\{\boldsymbol{x}=\left(x^{0}, \ldots, x^{n}\right) \in \mathbb{R}_{1}^{n+1} \left\lvert\,\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{L}=-\frac{1}{c^{2}}\right., c x_{0}>0\right\}
$$

where $\left(\mathbb{R}_{1}^{n+1},\langle,\rangle_{L}\right)$ be the Lorentz-Minkowski $(n+1)$-space. The tangent space $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)$ is the orthogonal complement \boldsymbol{x}^{\perp} of \boldsymbol{x}, and the restriction g_{H} of the inner product \langle,\rangle_{L} to $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)$ is positive definite. Thus, $\left(H^{n}\left(-c^{2}\right), g_{H}\right)$ is a Riemannian manifold, called the hyperbolic n-space.

Theorem 6.5. The hyperbolic space $\left(H^{n}\left(-c^{2}\right), g_{H}\right)$ is of constant sectional curvature $-c^{2}$.
Proof. Notice that $H^{n}\left(-c^{2}\right)$ can be expressed as a graph $x^{0}=\frac{1}{c} \sqrt{1+c^{2}\left(\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}\right)}$ defined on the $\left(x^{1}, \ldots, x^{n}\right)$-hyperplane, that is, it is covered by single chart. Then there exists a orthonormal frame field $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ defined on entire $H^{n}\left(-c^{2}\right)$. Denote by $\left(\omega^{i}\right), \Omega=\left(\omega_{i}^{j}\right)$ and $K=\left(\kappa_{i}^{j}\right)$ the dual frame, the connection form and the curvature form with respect to $\left[\boldsymbol{e}_{j}\right]$, respectively.

Regarding $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)$ as a linear subspace in \mathbb{R}_{1}^{n+1}, we can consider \boldsymbol{e}_{j} as a vector-valued function. In addition the position vector $\boldsymbol{x} \in H^{n}\left(-c^{2}\right)$ can be also regarded as a vector-valued function. Since $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)=\boldsymbol{x}^{\perp}$,

$$
\begin{equation*}
\mathcal{F}:=\left(\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right): H^{n}\left(-c^{2}\right) \rightarrow \mathrm{M}_{n+1}(\mathbb{R}) \quad \boldsymbol{e}_{0}=c \boldsymbol{x} \tag{6.5}
\end{equation*}
$$

gives a pseudo orthornormal frame along $H^{n}\left(-c^{2}\right)$, that is, $\mathcal{F}^{T} Y \mathcal{F}=Y(Y:=\operatorname{diag}(-1,1, \ldots, 1))$ holds.

As seen in Exercise 5-2, it holds that

$$
\begin{equation*}
d \boldsymbol{e}_{0}=c d \boldsymbol{x}=c \sum_{j=1}^{n} \omega^{j} \boldsymbol{e}_{j} \tag{6.6}
\end{equation*}
$$

On the other hand, for each $j=1, \ldots, n$, decompose the vector-valued one form $d \boldsymbol{e}_{j}$ as

$$
d \boldsymbol{e}_{j}=h_{j} \boldsymbol{e}_{0}+\sum_{s} \alpha_{j}^{s} \boldsymbol{e}_{s}
$$

[^7]where h_{j} and α_{j}^{s} are one forms on $H^{n}\left(-c^{2}\right)$. Here,
$$
h_{j}=-\left\langle d \boldsymbol{e}_{j}, \boldsymbol{e}_{0}\right\rangle_{L}=-d\left\langle\boldsymbol{e}_{j}, \boldsymbol{e}_{0}\right\rangle_{L}+\left\langle\boldsymbol{e}_{j}, d \boldsymbol{e}_{0}\right\rangle_{L}=c \omega^{j}
$$
and
$$
\alpha_{j}^{s}=\left\langle d \boldsymbol{e}_{j}, \boldsymbol{e}_{s}\right\rangle_{L}=d\left\langle\boldsymbol{e}_{j}, \boldsymbol{e}_{s}\right\rangle_{L}-\left\langle\boldsymbol{e}_{j}, d \boldsymbol{e}_{s}\right\rangle_{L}=-\alpha_{s}^{j} .
$$

Differentiating (6.6), it holds that

$$
0=\frac{1}{c} d d \boldsymbol{e}_{0}=\sum_{j}\left(d \omega^{j} \boldsymbol{e}_{j}-\omega^{j} \wedge d \boldsymbol{e}_{j}\right)=\sum_{j, s} \omega^{s} \wedge \omega_{s}^{j} \boldsymbol{e}_{j}-\sum_{j, s} \omega^{j} \wedge \alpha_{j}^{s} \boldsymbol{e}_{s}=\sum_{j} \sum_{s} \omega^{s} \wedge\left(\omega_{s}^{j}-\alpha_{s}^{j}\right) \boldsymbol{e}_{j}
$$

because $\omega^{j} \wedge \omega^{j}=0$. Thus, we have $\sum_{s} \omega^{s} \wedge\left(\omega_{s}^{j}-\alpha_{s}^{j}\right)=0$, and then

$$
\begin{aligned}
& 0=\left(\sum_{s} \omega^{s} \wedge\left(\omega_{s}^{j}-\alpha_{s}^{j}\right)\right)\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{m}\right)=\left(\omega_{l}^{j}\left(\boldsymbol{e}_{m}\right)-\alpha_{l}^{j}\left(\boldsymbol{e}_{m}\right)\right)-\left(\omega_{m}^{j}\left(\boldsymbol{e}_{l}\right)-\alpha_{m}^{j}\left(\boldsymbol{e}_{l}\right)\right), \\
& 0=\left(\omega_{j}^{m}\left(\boldsymbol{e}_{l}\right)-\alpha_{j}^{m}\left(\boldsymbol{e}_{l}\right)\right)-\left(\omega_{l}^{m}\left(\boldsymbol{e}_{j}\right)-\alpha_{l}^{m}\left(\boldsymbol{e}_{j}\right)\right)=-\left(\omega_{m}^{j}\left(\boldsymbol{e}_{l}\right)-\alpha_{m}^{j}\left(\boldsymbol{e}_{l}\right)\right)-\left(\omega_{l}^{m}\left(\boldsymbol{e}_{j}\right)-\alpha_{l}^{m}\left(\boldsymbol{e}_{j}\right)\right), \\
& 0=\left(\omega_{m}^{l}\left(\boldsymbol{e}_{j}\right)-\alpha_{m}^{l}\left(\boldsymbol{e}_{j}\right)\right)-\left(\omega_{j}^{l}\left(\boldsymbol{e}_{m}\right)-\alpha_{j}^{l}\left(\boldsymbol{e}_{m}\right)\right)=-\left(\omega_{l}^{m}\left(\boldsymbol{e}_{j}\right)-\alpha_{l}^{m}\left(\boldsymbol{e}_{j}\right)\right)+\left(\omega_{l}^{j}\left(\boldsymbol{e}_{m}\right)-\alpha_{l}^{j}\left(\boldsymbol{e}_{m}\right)\right),
\end{aligned}
$$

which conclude that $\omega_{l}^{j}=\alpha_{l}^{j}$. Summing up, we have

$$
\begin{equation*}
d \boldsymbol{e}_{j}=c \omega^{j} \boldsymbol{e}_{0}+\sum_{s} \omega_{j}^{s} \boldsymbol{e}_{s} \tag{6.7}
\end{equation*}
$$

Then the frame \mathcal{F} in (6.5) satisfies

$$
d \mathcal{F}=\mathcal{F} \widetilde{\Omega}, \quad \text { where } \quad \widetilde{\Omega}=\left(\begin{array}{cc}
0 & c \boldsymbol{\omega}^{T} \tag{6.8}\\
c \boldsymbol{\omega} & \Omega
\end{array}\right) \quad \text { and } \quad \boldsymbol{\omega}:=\left(\omega^{1}, \ldots, \omega^{n}\right)^{T} .
$$

The integrability condition of (6.8) is

$$
O=d \widetilde{\Omega}+\widetilde{\Omega} \wedge \widetilde{\Omega}=\left(\begin{array}{cc}
c^{2} \boldsymbol{\omega}^{T} \wedge \boldsymbol{\omega} & c\left(d \boldsymbol{\omega}^{T}+\omega^{T} \wedge \Omega\right) \\
c(d \boldsymbol{\omega}+\Omega \wedge \boldsymbol{\omega}) & d \Omega+\Omega \wedge \Omega+c^{2} \boldsymbol{\omega} \wedge \boldsymbol{\omega}^{T}
\end{array}\right)
$$

The lower-right components of the identity above yields

$$
\kappa_{i}^{j}+c^{2} \omega^{i} \wedge \omega^{j}=0
$$

Hence the sectional curvature of $\left(H^{n}\left(-c^{2}\right), g_{H}\right)=-c^{2}$.
Remark 6.6. One can show the completeness of $\left(H^{n}\left(-c^{2}\right), g_{H}\right)$ (cf. MTH.B505). Hence the hyperbolic space is a simply connected space form of constant negative sectional curvature.

6.4 Isometries

A C^{∞}-map $f: M \rightarrow N$ between manifolds M and N induces a linear map

$$
(d f)_{p}: T_{p} M \ni X \longmapsto(d f)_{p}(X)=\left.\frac{d}{d t}\right|_{t=0} f \circ \gamma(t) \in T_{f(p)} N
$$

where $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ is a smooth curve with $\gamma(0)=p$ and $\dot{\gamma}(0)=X$, called the differential of f. Since $p \in M$ is arbitrary, this induces a bundle homomorphism $d f: T M \rightarrow T N$.

Definition 6.7. A vector field on N along a smooth map $f: M \rightarrow N$ is a map $X: M \rightarrow T N$ satisfying $\pi \circ X=f$, where $\pi: T N \rightarrow N$ is the canonical projection.

Then for each vector field $X \in \mathfrak{X}(M), d f(X)$ is a vector field on N along f.
Definition 6.8. A C^{∞}-map $f: M \rightarrow N$ between Riemannian manifolds (M, g) and (N, h) is called a local isometry if $\operatorname{dim} M=\operatorname{dim} N$ and $f^{*} h=g$ hold, that is,

$$
f^{*} h(X, Y):=h(d f(X), d f(Y))=g(X, Y)
$$

holds for $X, Y \in T_{p} M$ and $p \in M$.
Lemma 6.9. A local isometry is an immersion.
Proof. Let $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ be a (local) orthonormal frame of M, where $n=\operatorname{dim} M$. Set $\boldsymbol{v}_{j}:=d f\left(\boldsymbol{e}_{j}\right)$ $(j=1, \ldots, n)$ for a smooth map $f:(M, g) \rightarrow(N, h)$. If f is a local isometry, $\left[\boldsymbol{v}_{1}(p), \ldots, \boldsymbol{v}_{n}(p)\right]$ is an orthonormal system in $T_{f(p)} N$, because

$$
h\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)=h\left(d f\left(\boldsymbol{e}_{i}\right), d f\left(\boldsymbol{e}_{j}\right)\right)=f^{*} h\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=g\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)
$$

Hence the differential $(d f)_{p}$ is of rank n.
The proof of Lemma 6.9 suggests the following fact:
Corollary 6.10. A smooth map $f:(M, g) \rightarrow(N, h)$ is a local isometry if and only if for each $p \in M$,

$$
\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]:=\left[d f\left(\boldsymbol{e}_{1}\right), \ldots, d f\left(\boldsymbol{e}_{n}\right)\right]
$$

is an orthonormal frame for some orthonormal frame $\left[\boldsymbol{e}_{j}\right]$ on a neighborhood of p.

6.5 Local uniqueness of space forms

Theorem 6.11. Let $U \subset \mathbb{R}^{n}$ be a simply connected domain and g a Riemannian metric on U. If the sectional curvature of (U, g) is constant k, there exists a local isometry $f: U \rightarrow N^{n}(k)$, where

$$
N^{n}(k)= \begin{cases}S^{n}(k) & (k>0) \\ \mathbb{R}^{n} & (k=0) \\ H^{n}(k) & (k<0)\end{cases}
$$

Proof. Take an orthonormal frame $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ on U, and let $\left(\omega^{j}\right), \Omega=\left(\omega_{i}^{j}\right)$ and $K=\left(\kappa_{i}^{j}\right)$ be the dual frame, the connection form, and the curvature form with respect to [\boldsymbol{e}_{j}], respectively. Since the sectional curvature is constant $k, \kappa_{i}^{j}=k \omega^{i} \wedge \omega^{j}$ holds for each (i, j), because of Theorem 6.1.

First, consider the case $k=0$: In this case, $K=d \Omega+\Omega \wedge \Omega=O$, and then by Theorem 4.5, there exists the unique matrix valued function $\mathcal{F}: U \rightarrow \mathrm{SO}(n)$ satisfying

$$
d \mathcal{F}=\mathcal{F} \Omega, \quad \mathcal{F}\left(p_{0}\right)=\mathrm{id}
$$

where $p_{0} \in U$ is a fixed point. Decompose the matrix \mathcal{F} into column vectors as $\mathcal{F}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$, and define an \mathbb{R}^{n}-valued one form

$$
\boldsymbol{\alpha}:=\sum_{j=1}^{n} \omega^{j} \boldsymbol{v}_{j}
$$

Then

$$
d \boldsymbol{\alpha}=\sum_{j=1}^{n}\left(d \omega^{j} \boldsymbol{v}_{j}-\omega^{j} \wedge d \boldsymbol{v}_{j}\right)=\sum_{j, s}\left(\omega^{s} \wedge \omega_{s}^{j}\right) \boldsymbol{v}_{j}-\sum_{j, s}\left(\omega^{j} \wedge \omega_{j}^{s}\right) \boldsymbol{v}_{s}=\mathbf{0}
$$

Hence by the Poincaré lemma (Theorem 4.8), there exists a smooth map $f: U \rightarrow \mathbb{R}^{n}$ satisfying $d f=\boldsymbol{\alpha}$. For such an f, it holds that

$$
d f\left(\boldsymbol{e}_{s}\right)=\alpha\left(\boldsymbol{e}_{s}\right)=\sum_{j=1}^{n} \omega^{j}\left(\boldsymbol{e}_{s}\right) \boldsymbol{v}_{j}=\boldsymbol{v}_{s}
$$

for $s=1, \ldots, n$. Hence $\left[d f\left(\boldsymbol{e}_{1}\right), \ldots, d f\left(\boldsymbol{e}_{n}\right)\right]=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$ is an orthonormal frame, and then f is a local isometry because Corollary 6.10.

Next, consider the case $k=-c^{2}<0$. We set

$$
\widetilde{\Omega}:=\left(\begin{array}{cc}
0 & c \boldsymbol{\omega}^{T} \\
c \boldsymbol{\omega} & \Omega
\end{array}\right), \quad \text { where } \quad \boldsymbol{\omega}=\left(\begin{array}{c}
\omega^{1} \\
\vdots \\
\omega^{n}
\end{array}\right)
$$

as in (6.8) in Section ??. Since $\kappa_{i}^{j}=k \omega^{i} \wedge \omega^{j}=-c^{2} \omega^{i} \wedge \omega^{j}, d \widetilde{\Omega}+\widetilde{\Omega} \wedge \widetilde{\Omega}=O$ holds as seen in Section ??. Hence there exists an matrix valued function $\mathcal{F}: U \rightarrow \mathrm{M}_{n+1}(\mathbb{R})$ satisfying

$$
\begin{equation*}
d \mathcal{F}=\mathcal{F} \widetilde{\Omega}, \quad \mathcal{F}\left(p_{0}\right)=\mathrm{id} \tag{6.9}
\end{equation*}
$$

where $p_{0} \in U$ is a fixed point. Notice that

$$
\widetilde{\Omega}^{T} Y+Y \widetilde{\Omega}=O \quad Y=\left(\begin{array}{cccc}
-1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

holds,

$$
d\left(\mathcal{F} Y \mathcal{F}^{T}\right)=\mathcal{F} \widetilde{\Omega} Y \mathcal{F}^{T}+\mathcal{F} Y \widetilde{\Omega}^{T} \mathcal{F}^{T}=\mathcal{F}\left(\widetilde{\Omega} Y+Y \widetilde{\Omega}^{T}\right) \mathcal{F}^{T}=O
$$

Hence, by the initial condition,

$$
\mathcal{F} Y \mathcal{F}^{T}=Y, \quad \text { that is, } \quad(\mathcal{F} Y)^{-1}=\mathcal{F}^{T} Y
$$

Thus, we have

$$
\begin{equation*}
\mathcal{F}^{T} Y \mathcal{F}=(\mathcal{F} Y)^{-1} \mathcal{F}=Y \mathcal{F}^{-1} \mathcal{F}=Y \tag{6.10}
\end{equation*}
$$

Decompose $\mathcal{F}=\left[\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$. Then (6.10) is equivalent to

$$
\begin{equation*}
-\left\langle\boldsymbol{v}_{0}, \boldsymbol{v}_{0}\right\rangle_{L}=\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{1}\right\rangle_{L}=\cdots=\left\langle\boldsymbol{v}_{n}, \boldsymbol{v}_{n}\right\rangle_{L}=1, \quad\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle=0 \quad(\text { if } i \neq j) \tag{6.11}
\end{equation*}
$$

In particular, the 0 -th component of \boldsymbol{v}_{0} never vanishes, since

$$
-1=\left\langle\boldsymbol{v}_{0}, \boldsymbol{v}_{0}\right\rangle_{L}=-\left(v_{0}^{0}\right)^{2}+\left(v_{0}^{1}\right)^{2}+\cdots+\left(v_{0}^{n}\right)^{2} \quad \boldsymbol{v}_{0}=\left(v_{0}^{0}, v_{0}^{1}, \ldots, v_{0}^{n}\right)^{T} .
$$

Moreover, by the initial condition $\boldsymbol{v}_{0}\left(p_{0}\right)=(1,0, \ldots, 0)^{T}$,

$$
\begin{equation*}
v_{0}^{0}>0 \tag{6.12}
\end{equation*}
$$

holds.
Set $f:=\frac{1}{c} \boldsymbol{v}_{0}$. Then $f: U \rightarrow \mathbb{R}_{1}^{n+1}$ is the desired map. In fact, by (6.11) and (6.12),

$$
f \in H^{n}\left(-c^{2}\right)=\left\{\boldsymbol{x}=\left(x^{0}, \ldots, x^{n}\right)^{T} \in \mathbb{R}_{1}^{n+1} \left\lvert\,\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-\frac{1}{c^{2}}\right., c x^{0}>0\right\}
$$

and

$$
d f\left(\boldsymbol{e}_{j}\right)=\frac{1}{c} d \boldsymbol{v}_{0}\left(\boldsymbol{e}_{j}\right)=\sum_{s=1}^{n} \omega^{s}\left(\boldsymbol{e}_{j}\right) \boldsymbol{v}_{s}=\boldsymbol{v}_{j}
$$

Hence $\left[\boldsymbol{v}_{j}\right]=\left[\boldsymbol{e}_{j}\right]$ is an orthonormal frame because (6.11).
The case $k>0$ is left as an exercise.

Exercises

6-1 Prove that the sphere

$$
S^{3}(1)=\left\{\boldsymbol{x} \in \mathbb{R}^{4} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=1\right\}
$$

of radius 1 in the Euclidean 4-space is of constant sectional curvature 1.
6-2 Prove Theorem 6.11 for $k=1$ and $n=2$, assuming Exercise 6-1.

Bibliography

[dC92] M. P. do Carmo, Riemannian geometry, Birkhäuser, 1992.
[Lee13] John M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, 2013.
[SG04] J. Lafontaine S. Gallot, D. Hulin, Riemannian geometry, Springer-Verlag, 2004.
[Tu17] L. W. Tu, Differential geometry, Springer Verlag, 2017.
[UY17] Masaaki Umehara and Kotaro Yamada, Differential geometry of curves and surfaces, World Scientific, 2017.

Glossary

1－form 1－形式， 1 次微分形式， 14
affirm connection アファイン接続， 16
arc－length parameter 弧長径数， 7
bilinear 双線形， 15
Cauchy－Riemann equations コーシー・リーマン方程式， 12
column vector 列ベクトル， 3
compatibility condition 適合条件， 9
conjugate 共役， 13
covariant tensor 共変テンソル， 14
covariant 共変， 14
curvature tensor 曲率テンソル， 26
curvature 曲率， 7
dual space 双対空間， 14
eigenvalue 固有値， 3
exterior derivative 外微分， 16
exterior product 外積， 23
flat 平坦， 22
form（微分）形式， 15
Frenet frame フルネ枠， 7
gauge transformation ゲージ変換， 17
general linear group $(\mathrm{GL}(n, \mathbb{R}))$ 一般線形群， 3
harmonic function 調和関数， 12
holomorphic 正則（複素関数が）， 12
initial value problem 初期値問題， 1
integrability condition 可積分条件， 9
Laplacian ラプラシアン， 12
Levi－Suavity connection レビ・チビタ接続， 16
Lie algebra リー代数， 14
Lie bracket リー括弧積， 14
linear connection 線形接続， 16
linear function 1 次関数， 2
linear ordinary differential equation 線形常微分方程式， 2
ordinary differential equation 常微分方程式， 1 orthogonal group $(\mathrm{O}(n))$ 直交群， 4
orthonormal frame 直交枠， 16
partial differential equation 偏微分方程式， 9
regular curve 正則曲線， 7
regular matrix 正則行列， 3
Riemannian connection リーマン接続， 16
second Bianchi identity 第二ビアンキ恒等式， 28
sectional curvature 断面曲率， 25
simply connected 単連結， 10,20
skew－symmeetric matrix 交代行列，歪対称行列， 4
skew－symmetric 交代的，反対称， 15
solution 解， 1
space curve 空間曲線， 7
space form 空間形， 29
special linear group $(\mathrm{SL}(n, \mathbb{R}))$ 特殊線形群， 4 special orthogonal group $(\mathrm{SO}(n))$ 特殊直交群， 4
tensor テンソル， 14
torsion 据率， 7
trilinear 三重線形， 15
unknown function 未知関数， 1

[^0]: ${ }^{1}|X|_{\mathrm{M}}>0$ whenever $X \neq O,|\alpha X|_{\mathrm{M}}=|\alpha||X|_{\mathrm{M}}$, and the triangle inequality.

[^1]: ${ }^{2} \mathrm{GL}(n, \mathbb{R})=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) ; \operatorname{det} A \neq 0\right\}$: the general linear group.
 ${ }^{3}$ In this lecture, id denotes the identity matrix.

[^2]: ${ }^{4} \mathrm{SL}(n, \mathbb{R})=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) ; \operatorname{det} A=1\right\}$; the special lienar group.
 ${ }^{5} \mathrm{O}(n)=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) ; A^{T} A=A A^{T}=\mathrm{id}\right\}:$ the orthogonal group; $\mathrm{SO}(n)=\{A \in \mathrm{O}(n) ; \operatorname{det} A=1\}$: the special orthogonal group.

[^3]: ${ }^{6}$ The theorem holds under the assumption of C^{2}-differentiablity.

[^4]: 4. July, 2023. Revised: 11. July, 2023
 ${ }^{7} \mathrm{GL}(n, \mathbb{R})$ denotes the set of $n \times n$-regular matrices.
[^5]: ${ }^{8}$ Theorem 2.6 in Advanced Topics in Geometry E (MTH.B501).

[^6]: ${ }^{9}$ Usually, completeness is defined in terms of geodesics: A Riemannian manifold (M, g) is complete if any geodesics are defined on entire \mathbb{R}. The definition here is one of the equivalent conditions of completeness, expressed in the Hopf-Rinow theorem. cf. MTH.B505.

[^7]: ${ }^{10}$ See, for example, Theorem A.1.4 in [UY17] for $n=2$. The idea of the proof works for general n.

