Advanced Topics in Geometry A1 (MTH.B405) Integrability Conditions

Kotaro Yamada kotaro@math.sci.isct.ac.jp http://www.official.kotaroy.com/class/2025/geom-a1

Institute of Science Tokyo

2025/05/09

Integrability Conditions

$$\frac{\partial X}{\partial u^j} = X\Omega_j \quad (j = 1, \dots, m), \qquad X(\mathbf{P}_0) = X_0. \tag{(*)}$$

Proposition (Prop. 3.2)

If a matrix-valued C^{∞} function $X : U \to \operatorname{GL}(n, \mathbb{R})$ satisfies (*), it holds that

$$\frac{\partial \Omega_j}{\partial u^k} - \frac{\partial \Omega_k}{\partial u^j} = \Omega_j \Omega_k - \Omega_k \Omega_j$$

for each (j,k) with $1 \leq j < k \leq m$.

Integrability of Linear systems

$$\frac{\partial X}{\partial u^j} = X\Omega_j \quad (j = 1, \dots, m), \qquad X(\mathbf{P}_0) = X_0. \tag{1}$$
$$\frac{\partial \Omega_j}{\partial u^k} - \frac{\partial \Omega_k}{\partial u^j} = \Omega_j \Omega_k - \Omega_k \Omega_j \tag{2}$$

Theorem (Thm. 3.5)

Let $\Omega_j: U \to M_n(\mathbb{R})$ (j = 1, ..., m) be C^{∞} -functions defined on a simply connected domain $U \subset \mathbb{R}^m$ satisfying (2). Then for each $P_0 \in U$ and $X_0 \in M_n(\mathbb{R})$, there exists the unique $n \times n$ -matrix valued function $X: U \to M_n(\mathbb{R})$ satisfying (1)

Integrability Conditions

Lemma (Lem. 3.4)

Let $\Omega_j: U \to M_n(\mathbb{R})$ (j = 1, ..., m) be C^{∞} -maps defined on a domain $U \subset \mathbb{R}^m$ which satisfy

$$\frac{\partial \Omega_j}{\partial u^k} - \frac{\partial \Omega_k}{\partial u^j} = \Omega_j \Omega_k - \Omega_k \Omega_j.$$

Then for each smooth map

$$\sigma \colon D \ni (t, w) \longmapsto \sigma(t, w) = (u^1(t, w), \dots, u^m(t, w)) \in U$$

defined on a domain $D \subset \mathbb{R}^2$, it holds that

$$\frac{\partial T}{\partial w} - \frac{\partial W}{\partial t} - TW + WT = 0,$$

where $T := \sum_{j=1}^{m} \widetilde{\Omega}_j \frac{\partial u^j}{\partial t}$, $W := \sum_{j=1}^{m} \widetilde{\Omega}_j \frac{\partial u^j}{\partial w}$, $(\widetilde{\Omega}_j := \Omega_j \circ \sigma)$.

Integrability Conditions

$$\frac{\partial X}{\partial u^j} = X\Omega_j \quad (j = 1, \dots, m), \qquad X(\mathbf{P}_0) = X_0. \tag{*}$$

Lemma (Lem. 3.3)

Let $X: U \to M_n(\mathbb{R})$ be a C^{∞} -map satisfying (*) Then for each smooth path $\gamma: I \to U$ defined on an interval $I \subset \mathbb{R}$, $\hat{X} := X \circ \gamma: I \to M_n(\mathbb{R})$ satisfies the ordinary differential equation

$$\frac{d\hat{X}}{dt}(t) = \hat{X}(t)\Omega_{\gamma}(t) \qquad \left(\Omega_{\gamma}(t) := \sum_{j=1}^{n}\Omega_{j} \circ \gamma(t)\frac{du^{j}}{dt}(t)\right)$$

on *I*, where $\gamma(t) = (u^{1}(t), ..., u^{m}(t)).$

Proof of Theorem 2.5 (outline)

- Take $P \in U$, and a path $\gamma \colon [0,1] \to U$ with $\gamma(0) = P_0$ and $\gamma(1) = P$.
- Solve the linear ODE as in Lemma 2.3 with initial condition $\hat{X}(0) = X_0$.
- Show the value $\hat{X}(1)$ does not depend on $\gamma \Leftarrow$ by Lem. 3.4
- Define $X(\mathbf{P}) := \hat{X}(1)$.
- Show X is the desired solution.

Application: Poincaré's lemma

Theorem (Poincaré's lemma)

If a differential 1-form

$$\omega = \sum_{j=1}^{m} \alpha_j(u^1, \dots, u^m) \, du^j$$

defined on a simply connected domain $U \subset \mathbb{R}^m$ is closed, that is, $d\omega = 0$ holds, then there exists a C^{∞} -function f on U such that $df = \omega$. Such a function f is unique up to additive constants.

Application: Conjugation of harmonic functions

Theorem

Let $U \subset \mathbb{C} = \mathbb{R}^2$ be a simply connected domain and $\xi(u, v)$ a C^{∞} -function harmonic on U. Then there exists a C^{∞} harmonic function η on U such that $\xi(u, v) + i \eta(u, v)$ is holomorphic on U.

Application: Conjugation of harmonic functions

Example

 $\xi(u,v) = e^u \cos v$

Exercise 3-1

Problem

Let

$$\xi_1(u,v) := \frac{u}{u^2 + v^2}, \qquad \xi_2(u,v) := \log \sqrt{u^2 + v^2}$$

be a function defined on non-simply connected domain $U := \mathbb{R}^2 \setminus \{(0,0)\}.$

- **()** Show that both ξ_1 and ξ_2 are harmonic on U.
- **2** Verify that there exists a conjugate harmonic functaion η_1 of ξ_1 on U.
- Solution Prove that there exists no conjugate harmonic functaion η_2 of ξ_2 on U.

Exercise 3-2

Problem

Consider a linear system of partial differential equations for 3×3 -matrix valued unknown X on a domain $U \subset \mathbb{R}^2$ as

$$\begin{split} \frac{\partial X}{\partial u} &= X\Omega, \quad \frac{\partial X}{\partial v} = X\Lambda, \\ & \left(\Omega := \begin{pmatrix} 0 & -\alpha & -h_1^1 \\ \alpha & 0 & -h_1^2 \\ h_1^1 & h_1^2 & 0 \end{pmatrix}, \quad \Lambda := \begin{pmatrix} 0 & -\beta & -h_2^1 \\ \beta & 0 & -h_2^2 \\ h_2^1 & h_2^2 & 0 \end{pmatrix} \right), \end{split}$$

where (u, v) are the canonical coordinate system of \mathbb{R}^2 , and α , β and h_j^i (i, j = 1, 2) are smooth functions defined on U. Write down the integrability conditions in terms of α , β and h_j^i .