Advanced Topics in Geometry A1 (MTH.B405) A review of surface theory

Kotaro Yamada kotaro@math.sci.isct.ac.jp http://www.official.kotaroy.com/class/2025/geom-a1

Institute of Science Tokyo

2025/05/16

Application: Poincaré's lemma

Theorem

If a differential 1-form

$$\omega = \sum_{j=1}^{m} \alpha_j(u^1, \dots, u^m) \, du^j$$

defined on a simply connected domain $U \subset \mathbb{R}^m$ is closed, that is, $d\omega = 0$ holds, then there exists a C^{∞} -function f on U such that $df = \omega$. Such a function f is unique up to additive constants.

Application: Conjugation of harmonic functions

Theorem

Let $U \subset \mathbb{C} = \mathbb{R}^2$ be a simply connected domain and $\xi(u, v)$ a C^{∞} -function harmonic on U. Then there exists a C^{∞} harmonic function η on U such that $\xi(u, v) + i \eta(u, v)$ is holomorphic on U.

Exercise 3-1

Problem

Let

$$\xi_1(u,v) := \frac{u}{u^2 + v^2}, \qquad \xi_2(u,v) := \log \sqrt{u^2 + v^2}$$

be functions defined on non-simply connected domain $U := \mathbb{R}^2 \setminus \{(0,0)\}.$

- Show that both ξ_1 and ξ_2 are harmonic on U.
- **2** Verify that there exists a conjugate harmonic function η_1 of ξ_1 on U.
- **③** Prove that there exists no conjugate harmonic function η_2 of ξ_2 on U.

Exercise 3-2

Problem (Ex. 3-2)

Consider a linear system of partial differential equations for 3×3 -matrix valued unknown X on a domain $U \subset \mathbb{R}^2$ as

$$\begin{split} \frac{\partial X}{\partial u} &= X\Omega, \quad \frac{\partial X}{\partial v} = X\Lambda, \\ & \left(\Omega := \begin{pmatrix} 0 & -\alpha & -h_1^1 \\ \alpha & 0 & -h_1^2 \\ h_1^1 & h_1^2 & 0 \end{pmatrix}, \quad \Lambda := \begin{pmatrix} 0 & -\beta & -h_2^1 \\ \beta & 0 & -h_2^2 \\ h_2^1 & h_2^2 & 0 \end{pmatrix} \right), \end{split}$$

where (u, v) are the canonical coordinate system of \mathbb{R}^2 , and α , β and h_j^i (i, j = 1, 2) are smooth functions defined on U. Write down the integrability conditions in terms of α , β and h_j^i .

Exercise 3-2

$$\begin{split} \Omega &= \begin{pmatrix} 0 & -\alpha & -h_1^1 \\ \alpha & 0 & -h_1^2 \\ h_1^1 & h_1^2 & 0 \end{pmatrix}, \quad \Lambda &= \begin{pmatrix} 0 & -\beta & -h_2^1 \\ \beta & 0 & -h_2^2 \\ h_2^1 & h_2^2 & 0 \end{pmatrix}, \\ \Omega_v &- \Lambda_u - \Omega \Lambda + \Lambda \Omega \\ &= \begin{pmatrix} 0 & -\alpha_v + \beta_u + h_1^1 h_2^2 - h_2^1 h_1^2 & -(h_1^1)_v + (h_2^1)_u - \alpha h_2^2 - \beta h_1^2 \\ * & 0 & -(h_1^2)_v + (h_2^2)_u + \alpha h_2^1 - \beta h_1^1 \\ * & * & 0 \end{pmatrix}, \end{split}$$

Immersed surfaces

- $p \colon U \to \mathbb{R}^3$: a regular surface
- $\nu: U \to \mathbb{R}^3$: the unit normal vector field.

Fundammental forms

$$ds^{2} := dp \cdot dp = E \, du^{2} + 2F \, du \, dv + G \, dv^{2},$$
$$\widehat{I} := \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} p_{u}^{T} \\ p_{v}^{T} \end{pmatrix} (p_{u}, p_{v}),$$
$$II := -dv \cdot dp == L \, du^{2} + 2M \, du \, dv + N \, dv^{2},$$
$$\widehat{II} := \begin{pmatrix} L & M \\ M & N \end{pmatrix} = - \begin{pmatrix} p_{u}^{T} \\ p_{v}^{T} \end{pmatrix} (\nu_{u}, \nu_{v})$$

Curvatures

$$A := \widehat{I}^{-1} \widehat{II} = \begin{pmatrix} A_1^1 & A_2^1 \\ A_1^2 & A_2^2 \end{pmatrix},$$
$$K := \lambda_1 \lambda_2 = \det A = \frac{\det \widehat{II}}{\det \widehat{I}}$$
$$H := \frac{1}{2} (\lambda_1 + \lambda_2) = \frac{1}{2} \operatorname{tr} A.$$

 λ_1, λ_2 : the eigenvalues of A