Advanced Topics in Geometry A1 (MTH.B405)

The fundamental theorem for surfaces

Kotaro Yamada kotaro@math.sci.isct.ac.jp

http://www.official.kotaroy.com/class/2025/geom-a1

Institute of Science Tokyo

2025/05/30

The fundamental theorem for surfaces

Given data: six functions defined on $U \subset \mathbb{R}^2$.

$$\widehat{I} = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}, \qquad \widehat{I}I = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix},$$

Assumption:

$$g_{11} > 0$$
, $g_{22} > 0$, and $g_{11}g_{22} - g_{12}g_{21} > 0$

Set up:

$$\Gamma_{ij}^k = \frac{1}{2} \sum_{l=1}^2 g^{kl} (g_{lj,k} + g_{il,j} - g_{jl,k}), \qquad A_j^i = \sum_{l=1}^2 g_{jl} h_{il}$$

The statement

Theorem (Theorem 6.1)

Assume U is simply connected, and (g_{ij}) and (h_{ij}) satisfy the Gauss equation and Codazzi equations. Then there exists a regular surface $p: U \to \mathbb{R}^3$ such that

- the first fundamental form of p is $ds^2 = \sum_{i,j} g_{ij} du^i du^j$,
- the second fundamental form of p with respect to the unit normal vector field $\nu := (p_{,1} \times p_{,2})/|p_{,1} \times p_{,2}|$ coincides with $II = \sum_{i,j} h_{ij} du^i du^j$.

Moreover, such a surface p is unique up to a transformation

$$p \mapsto Rp + a$$
, $R \in SO(3)$, $a \in \mathbb{R}^3$.

Uniqueness

Existence

Exercise 6-1

Problem (Ex. 6-1)

Let $\theta\colon U\to\mathbb{R}$ be a C^∞ -function defined on a simply connected domain U of the uv-plane \mathbb{R}^2 . Assuming θ satisfies $\theta_{uv}=\sin\theta$, prove that there exists a surface $p\colon U\to\mathbb{R}^3$ whose first and second fundamental forms are

$$ds^{2} = du^{2} + 2\cos\theta \, du \, dv + dv^{2}, \qquad II = 2\sin\theta \, du \, dv.$$

Exercise 6-2

Problem (Ex. 6-2)

Let $\sigma\colon U\to\mathbb{R}$ be a C^∞ -function defined on a simply connected domain U of the uv-plane \mathbb{R}^2 . Assuming σ satisfies $\Delta\sigma=-\frac{1}{2}\sinh\sigma$, prove that there exists a surface $p\colon U\to\mathbb{R}^3$ with

$$ds^2 = e^{2\sigma}(du^2 + dv^2), \qquad II = \frac{1}{2}((e^{2\sigma} + 1)du^2 + (e^{2\sigma} - 1)dv^2).$$