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Mean Curvature
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Mean Curvature

Q (May 23): Since the principal curvatures are the curvature of
the most curved direction and the Gaussian curvature
is the product of the two of them, I think I can get
roughly a shape of surface from the sign of Gaussian
curvature. On the other hand, I am not sure what
the mean curvature geometrically. Is it something
that can be intuitively understood?
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Area and mean curvature

Definition (Area of surfaces)
p : U ! R3: a surface; V ⇢ U (V ⇢ U is compact)

Ap(V ) :=

ZZ

V
da, da :=

p
det bI du dv =

p
EG� F 2 du dv.

Proposition (7.3)

Apt(V ) = Ap(V )� 2t

ZZ

V
H da+ o(t) (t ! 0),

where p
t := p+ t⌫ (parallel surfaces)
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Example—The Plane
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Minimal Surfaces

Fact
If a surface p 2 SC has the least area among all surfaces in SC ,
then the mean curvature of p identically vanishes.

Definition
A minimal surface is a surface whose mean curvature vanishes
identically.

https://math.hmc.edu/jacobsen/demolab/soap-film-2/
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Minimal Surfaces

catenoid Enneper’s helicoid
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Broad area in differential geometry.



Minimal Surfaces

Olympiastadion München (1971); Frei Otto
Von Amrei-Marie - Eigenes Werk, CC-BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=46848767
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Example—The Round sphere

Lemma (7.7)
Let S ⇢ R3 be a surface Assume for all P and Q 2 S, there exists
an orientation preserving congruence F of R3 satisfying F (S) = S

and F (P) = Q. Then the mean curvature of S is constant.

S = S
2(r) := {(x, y, z) ; x2 + y

2 + z
2 = r

2} ) H =
±1

r

Apt(V ) = Ap(V )� 2t
RR

V H da+ o(t)
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Example—The (circular) cylinder

S = {(x, y, z) ; x2 + y
2 = r

2} ) H =
±1

r

Apt(V ) = Ap(V )� 2t
RR

V H da+ o(t)
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Constant Mean Curvature (CMC) Surfaces

Fact
When the volume of the enclosed domain is fixed, the closed
surface with the least area is of (non-zero) constant mean
curvature.

https://en.wikipedia.org/wiki/Soap_bubble
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CMC surfaces

Q
Are there any other constant mean curvature surfaces than the
“trivial” examples above?

unduloid nodoid
Delaunay’s surfaces
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Alexandrov’s theorem

Fact (A. D. Alexandrov 1958)
The only closed surfaces of constant mean curvature without
self-intersections are the round spheres.
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Classification of Closed Surfaces
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Imm H
. Hopf .

(1953)
closed

The only Econstant mean curvature
surface ofeeenusO is the round sphere.

Lonville's Theorem in complex analysis
· codazzi eg.
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CMC tori

Theorem (H. Wente, 1986)
There exists a CMC torus immersed in R3.
Higher genus examples: N. Kapouleas, 1986.
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Wente’s construction—How to describe tori

Definition
A function f defined on R2 is said to be doubly periodic if there
exists a pair {v1,v2} of linearly independent vectors in R2 such
that

f(x+ v1) = f(x+ v2) = f(x) (1)
holds for any x 2 R2. The basis {v1,v2} is called the period of f .

I A doubly periodic function f is considered as a function on a
torus R2/(Zv1 � Zv2).

I Goal: to construct doubly periodic p : R2 ! R3.
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r: R -> Ri
R2

doubly periodic
-# Mac

= r(x)+ Me)

= r(a))

o (a) + mm, +mN) = Ha))
-m, x + QRY,2) = Mempact gen

↑
parallel translation inR



Wente’s construction—Fundamental Theorem

Proposition
Let � : R2 ! R be a doubly periodic function with period
{v1,v2}. If � satisfies

�� = �uu + �vv = �1

2
sinh 2�,

there exists a parametrized surface p : R2 ! R3 with

ds
2 = e

2�(du2 + dv
2), II =

1

2

�
(e2� + 1)du2 + (e2� � 1)dv2

�
,

whose mean curvature is identically 1/2. Moreover, there exist
matrices Ri 2 SO(3) and vectors ai 2 R3 (i = 1, 2) such that

p(x+ vi) = Rip(x) + ai (i = 1, 2).
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Wente’s construction—How to Solve Gauss eq.

⌦ := (0, a)⇥ (0, b)

�� = �1

2
sinh 2� on ⌦, � = 0 on @⌦, � > 0 on ⌦o

,
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Wente’s construction—How to Control Periods

p(x+ vi) = Rip(x) + ai

R2 = id, ai = 0 (i = 1, 2), and

R1 =

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

1

A ,

where ✓ = ✓(a, b).
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Wente torus
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After Wente

I U. Abresach (1987)
I R. Walter (1987)
I U. Pinkall and I. Stering (1989)
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Thank you!
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