June 06, 2025 Kotaro Yamada kotaro@math.sci.isct.ac.jp

Info. Sheet 7; Advanced Topics in Geometry A1 (MTH.B405)

Informations

- Today is the final class of MTH.B405. Thank you for attending and cooperating the course.
- Please fill the form "Course Survey" in LMS.

Corrections

- 20250523-C-handout.pdf, page 8, the second line of definition of R_{jk} : $\Gamma_{ks}^s \Rightarrow \Gamma_{k2}^s$.
- Lecture Note, page 31, eq. (6.3):

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{2} g^{kl} (g_{kj,i} + g_{ik,j} - g_{ij,k}) \qquad \Rightarrow \qquad \Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{2} g^{kl} (g_{lj,i} + g_{il,j} - g_{ij,l})$$

- Lecture Note, page 32, proof of Lemma 6.2: $g_{ij} \Rightarrow \gamma_{ij}$.
- Lecture Note page 32 (and page 7 of Handout/Blackboard C), Problem 6-2:

$$\Delta \sigma = -\frac{1}{2} \sinh \sigma \qquad \Rightarrow \qquad \Delta \sigma = -\frac{1}{2} \sinh 2\sigma$$

• Lecture Note, page 33, line 1: it hold \Rightarrow it holds

Students' comments

このあたりは計算量が多くて苦手なので、早く 2Q の非ユークリッド幾何に入ってほしいという気持ちです。

I'm not very good at this field because of amount of calculations, so I'm hoping to get into 2Q non-Euclidean geometry as soon as possible.

Lecturer's comment A lot of calculations are included in 2Q's lectures.

Q and A

Q 1: (問題 6-1 について)今回のコダッチ方程式は自動的に成立して、ガウス方程式を見たすには θ_{uv} = sin θ が必要になりました.一方、ガウス方程式の方が成り立ちにくい、もしくはその ような例を多く扱うことはありますか?

(For Problem 6-1) This time the Codazzi equations hold automatically and we need $\theta_{uv} = \sin \theta$ to see the Gaussian equation. Is it usual to deal with Gaussian equations that are harder to solve than Codazzi?

- A: Depending the problems. This time, and in the lectures in 2Q, we first solve Codazzi equations, and Gauss then.
- **Q 2:** What fails if *U* is not simply connected?
- A: The solution might be multi-valued, like Problem 1-2.
- **Q 3:** Do we have any example when (g_{ij}, h_{ij}) does not satisfy Gauss equation or Codazzi equation, and show that such surface does NOT exist?
- A: If the fundamental forms do not satisfy Gauss/Codazzi, the corresponding surface does not exist (automatically) because the Gauss and Weingarten equations do not satisfy integrability conditions. For example, $ds^2 = dx^2 + dy^2$ be $II = dx^2 + dy^2$ cannot be realized by any surface in \mathbb{R}^3 .
- Q 4: Thm 6.1 は回転と平行移動を除いて一意ということですよね?

Does the uniqueess in Theorem 6.1 mean unique up to rotations and translations?

A: Yes.

- **Q 5:** 問題 6-1 において Gauss equation から $\theta_{uv} = \sin \theta$ が必要であることが示されますが, この $\theta_{uv} = \sin \theta$ という一見きれいな条件は,他の方法でも分かるのでしょうか? それとも Gauss equation を計算して初めてわかるのでしょうか. In problem 6-1, it is shown that $\theta_{uv} = \sin \theta$ is required from the Gauss equation, but can this seemingly neat condition $\theta_{uv} = \sin \theta$ be found in other ways? Or can it be found only by calculating the Gauss equation?
- A: The Gauss-Weingarten equations for these fundamental forms are simple (cf. Problem 4-2). The Gauss equation is the integrability condition of these.
- **Q 6:** What happens if two symmetric matrices \hat{I} and \hat{II} with components that are real-valued C^{∞} -functions on U satisfy only Gauss equation? Or only Codazzi's? Can anything be said about the existence of regular surfaces p with fitting fundamental forms in such cases?
- **A:** No. The corresponding surface cannot exist because the compatibility condition of the Gauss frame fails.
- **Q** 7: We need the first fundamental form to be positive definite, in particular invertible. If $\theta \in (0, \pi)$ then there might exist $(u, v) \in U$ such that $\cos^2 \theta(u, v) = 1$. If we replace the first fundamental form by $ds^2 = 1 du^2 + \cos \theta du dv + 1 dv^2$, then ds^2 is positive definite and the Codazzi equations are satisfied.
- A: When $\theta \in (0, \pi)$, $|\cos \theta| < 1$, never reaching 1.