
1 Overview

Euclidean space

In this lecture, we denote by Rn the n-dimensional Euclidean space with canonical inner product
〈 , 〉:

(1.1) 〈x,y〉 = xTy = x1y1 + · · ·+ xnyn for x =

x1

...
xn

 , y =

y1
...
yn

 ∈ Rn,

here, we regard an element of Rn as a column vector, and (∗)T denotes the matrix transposition.
Set1

(1.2) ‖x‖ :=
√
〈x,x〉, d(x,y) := ‖y − x‖ (x,y ∈ Rn)

which is called the norm of x, and the distance of x and y, respectively.

A map f : Rn → Rn is called isometry if

(1.3) d
(
f(x), f(y)

)
= d(x,y)

holds for any x and y ∈ Rn.

Definition 1.1. An n × n real matrix R is said to be an orthogonal matrix if RTR = id holds,
where id is the n× n identity matrix.

The determinant of an orthogonal matrix R is 1 or −1. We denote by O(n) the set of n × n
orthogonal matrices, and

(1.4) SO(n) := {R ∈ O(n) ; detR = 1}.

Fact 1.2. A map f : Rn → Rn is isometry if and only if it is written in the form

(1.5) f(x) = Rx+ a
(
R ∈ O(n),a ∈ Rn

)
.

If R in (1.5) is a member of SO(n), f is said to be orientation preserving.

The Fundamental Theorem for surface Theory

Our object in this lecture is surfaces in Euclidean 3-space. The simplest question is:

Question 1.3. What quantity determines a shape of surface?

It is necessary for mathematical formulation of this question to express the surface. Among
several ways to explain surfaces, we regard a surface as a parametrization, that is, a map 2

f : U 3 (u, v) 7→ f(u, v) ∈ R3,

where U is a domain 3of R2.
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1“A := B” means that “A is defined by B”.
2Unless confusion, points in the source domain are represented by row vectors.
3A domain is a connected open subset U ⊂ Rn.
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Example 1.4. � Set U := (−π, π)× (−π
2 ,

π
2 ) and

f : U 3 (u, v) 7→ f(u, v) =

cosu cos v
sinu cos v

sin v

 ∈ R3

is a parametrization of the unit sphere in R3. The parameter u (resp. v) represents the
longitude (resp. the latitude) of the point of the sphere.

� Set V := (−π, π)× R and

g : V 3 (s, t) 7→ g(s, t) =

cos s sech t
sin s sech t
tanh t

 ∈ R3.

Then g parametrizes the unit sphere, and the st-plane is regarded as the Mercator’s world
map.

Then the following “fundamental theorem” is one of the answer:

Theorem (The Fundamental Theorem for surface theory). Let

� U ⊂ R2 be a simply connected domain,

� I be a positive definite symmetric quadratic form on U

� II be a symmetric quadratic form on U .

Assume I and II satisfy the Gauss and Codazzi equations. Then there exists a surface f : U → R3

whose first and second fundamental forms are I and II, respectively.
Moreover, such an f is unique up to orientation preserving isometry of R3.

The undefined words in the statement, and mathematical meanings of the theorem will be
explained through the lecture, and our goal is to prove this theorem.

Commutativity of partial derivatives

One of the most important fact in undergraduate calculus is the following “commutativity of partial
derivatives”.

Theorem 1.5. Let f : U → R be a function defined on a domain U of R2 and fix a point p =
(u, v) ∈ U . If the second derivative ∂2f/(∂x∂y) = fyx and ∂2f/(∂y∂x) = fxy are both defined on
U and continuous at p, then

∂2f

∂x∂y
(p) =

∂2f

∂y∂x
(p)

holds.

Proof. Take (h, k) ∈ R2 satisfying (u+ th, v + sk) ∈ U for all t, s ∈ [0, 1]. Let

g(h, k) := f(u+ h, v + k)− f(u, v + k)− f(u+ h, v) + f(u, v).

Since the partial derivative fx exists on U , the function of one variable F1(t) := g(th, k) is differ-
entiable on 0 ≦ t ≦ 1. Then the mean value theorem implies that there exists θ1 = θ1(h, k) with
0 < θ1 < 1 such that

g(h, k) = F1(1) = F1(1)− F1(0) = F ′
1(θ1) =

(
fx(u+ θ1h, v + k)− fx(u+ θ1h, v)

)
h = F2(1)h,



3 MTH.B406; Sect. 1

where F2(s) := fx(u + θ1h, v + sk) − fx(u + θ1h, v) (0 ≦ s ≦ 1). Since (fx)y exists on U , F2 is
differentiable on 0 ≦ s ≦ 1. So, applying mean value theorem again, there exists θ2 = θ2(h, k) ∈
(0, 1) such that

F2(1) = F ′
2(θ2) = fxy(u+ θ1h, v + θ2k)k.

Summing up, there exists θ1, θ2 ∈ (0, 1) depending on h and k such that

(1.6) g(h, k) = fxy(u+ θ1h, v + θ2k)hk.

On the other hand, changing roles of h and k, we know that there exist φ1, φ2 ∈ (0, 1) such that

(1.7) g(h, k) = fyx(u+ φ1h, v + φ2k)hk.

Then
fxy(u+ θ1h, v + θ2k) = fyx(u+ φ1h, v + φ2k)

whenever hk 6= 0. Here, taking limit (h, k) → (0, 0), we have

(u+ θ1h, v + θ2k) → (u, v), (u+ φ1h, v + φ2k) → (u, v)

because θj , φj ∈ (0, 1) for j = 1, 2. Thus, by continuity of fxy and fyx, we have fxy(u, v) =
fyx(u, v).

Definition 1.6. A function f defined on a domain U ⊂ R2 is said to be

(1) of class C0 if it is continuous on U ,

(2) of class C1 if there exists a partial derivative fx and fy on U , and both of them are continuous,

(3) of class Cr (r = 2, 3, . . . ) if it is of class Cr−1 and all of the (r − 1)-st partial differentials
are of class C1, and

(4) of class C∞ if it is of class Cr for arbitrary non-negative integer r.

Using these terms, we have

Corollary 1.7. If a function f : U → R defined on a domain U of R2 is of class C2, then fxy = fyx
holds on U .

In this lecture, functions are assumed to be of class C∞. So partial differentials are always
commutative.

Inverse of the commutativity—Poincaré lemma

A differential 1-form, or a 1-form defined on a domain U ⊂ R2 is the form

α = a(x, y) dx+ b(x, y) dy

where a and b are C∞-functions defined on U . The total differential, or simply the differential, of
C∞-function f defined as

df := fx dx+ fy dy

is a typical example of differential forms.
A differential 2-form is a form

ω = c(x, y) dx ∧ dy

where c is a C∞-function. The exterior differential dα

dα = d(a dx+ b dy) = (bx − ay) dx ∧ dy

of 1-form α = a dx+ b dy is a typical example.
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Lemma 1.8. Let f be a C∞-function defined on a domain U ⊂ R2. Then d(df) = 0 holds.

Proof. d(df) = d(fx dx+ fy dy) = (fyx − fxy) dx ∧ dy = 0.

Theorem 1.9 (Poincaré lemma). Let U be a simply connected domain, and α a differential 1-
form defined on U . If dα = 0, then there exists a C∞ function f defined on U such that df = α.

The definition, fundamental properties of simple connectedness will be given in Section 3.

Exercises

1-1 Let f(x, y) = eax cos y, where a is a constant. Find a function g(x, y) satisfying

gx = −fy, gy = fx, g(0, 0) = 0.

1-2 Let U = R2 \ {(t, 0) ; t ≦ 0} and consider a 1-form

α = a(x, y) dx+ b(x, y) dy :=
−y

x2 + y2
dx+

x

x2 + y2
dy.

on U . Take a point P = (r cos θ, r sin θ) ∈ U (r > 1, 0 < θ < π), and two curves

c1(t) :=
(
x1(t), y1(t)

)
= (cos t, sin t) (0 ≦ t ≦ θ),

c2(s) :=
(
x2(s), y2(s)

)
= (s cos θ, s sin θ) (1 ≦ s ≦ r),

whose union gives a curve joining (1, 0) and P. Compute the line integral∫
c1∪c2

α :=

∫ θ

0

(
a(x1(t), y1(t))

dx1

dt
dt+ b(x1(t), y1(t))

dy1
dt

dt

)
+

∫ r

1

(
a(x2(s), y2(s))

dx2

ds
ds+ b(x2(s), y2(s))

dy2
ds

ds

)
.


