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7 An application—Surfaces of constant mean curvature

7.1 Mean curvature

Let p : U 3 (u, v) 7→ p(u, v) ∈ R3 be a regular parametrization of a surface defined on a domain
U ⊂ R2, and let ν be its unit normal vector field. We write first and second fundamental forms as

ds2 = E du2 + 2F du dv +Gdv2, II = Ldu2 + 2M dudv +N dv2,

where(
Î :=

)(E F
F G

)
=

(
pu · pu pu · pv
pv · pu pv · pv

)
,

(
ÎI :=

)(L M
M N

)
= −

(
νu · pu νu · pv
νv · pu νv · pv

)
.

Since the parametrization is regular, the matrix Î is positive definite:

EG− F 2 > 0, E > 0, G > 0.

Then we define the Weingarten matrix A by

A = Î −1 ÎI .

Definition 7.1. The mean curvature of the surface p is defined by

H :=
1

2
trA =

EN − 2FM +GL

2(EG− F )2
.

7.2 Area and mean curvature

To explain geometric meanings of mean curvature, we start with the area of surfaces: Let p : U →
R3 be a regular parametrization of a surface as in the top of this subsection. Take a subdomain
V ⊂ U such that the closure V of V is bounded and contained in U .

Definition 7.2. The area of the image p(V ) of the surface is defined as

Ap(V ) :=

∫∫
V

da, da :=
√
det Î du dv =

√
EG− F 2 du dv.

We call da the area element of p.

For a real number t, pt := p+ tν is called the parallel surface of p with distance t.

Proposition 7.3.

Apt(V ) = Ap(V )− 2t

∫∫
V

H da+ o(t) (t → 0).

Proof. The coefficient matrix of the first fundamental form of pt is obtained as

Î t :=

(
Et F t

F t Gt

)
=

(
(pu + tνu) · (pu + tνu) (pu + tνu) · (pv + tνv)
(pv + tνv) · (pu + tνu) (pv + tνv) · (pv + tνv)

)
=

(
E − 2tL F − 2tM
F − 2tM G− 2tN

)
+ o(t) = Î − 2t ÎI + o(t).
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Then

det Î t = (EG− F 2)− 2t(EN − 2FM +GL) + o(t)

= (EG− F 2)

(
1− 2t

EN − 2FM +GL

EG− F 2
+ o(t)

)
= (EG− F 2) (1− 4tH + o(t)) .

Hence the area element of pt is

dat : =
√
det Î du dv =

√
EG− F 2

√
1− 4tH + o(t) du dv =

(
1− 2tH + o(t)

)
da

Integrating this, we obtain the conclusion.

Roughly speaking, the mean curvature is the rate of change of the area of a family of parallel
surfaces of a surface. The following proposition supports this: We denote by D and S1 = ∂D the
unit closed disc {(u, v) ; u2 + v2 5 1} and its boundary, respectively. Let C ⊂ R3 be a simple
closed curve in R3 and denote SC the set of surfaces p : D → R3 with p(S1) = C.

Fact 7.4. If a surface p ∈ SC has the least area among all surfaces in SC , then the mean curvature
of p identically vanishes.

If you are familiar to the variational method, this means that the Euler-Lagrange equation of
the area functional A : SC → R is “H = 0”. Keeping this fact in mind,

Definition 7.5. A minimal surface is a surface whose mean curvature vanishes identically.

On the other hand, the conditional extremal problem for the area functional, we have

Fact 7.6. When the volume of the enclosed domain is fixed, the closed surface with the least area
is of (non-zero) constant mean curvature.

7.3 Examples of constant mean curvature surfaces

Since the mean curvature is invariant under congruence of R3, we have

Lemma 7.7. Let S ⊂ R3 be a surface (an image of a parametrized surface). Assume for all P
and Q ∈ S, there exists an orientation preserving congruence F of the Euclidean 3-space satisfying
F (S) = S and F (P) = Q. Then the mean curvature of S is constant.

Example 7.8 (The plane). A plane p(u, v) = (u, v, 0) is a minimal surface. In fact, since the unit
normal vector field ν = (0, 0, 1) is constant, II vanishes identically.

Example 7.9 (The round sphere). Let S := S2(r) ⊂ R3 be the sphere of radius r > 0 centered
at the origin. Since the linear action of SO(3) on R3 preserves S2(r) and transitive, the mean
curvature of S2(r) is constant.

Let us compute the value of the mean curvature: For each point p ∈ S2(r), the position vector
p is perpendicular to the tangent plane of S2(r) at p. Hence ν := (1/r)p is the (outward) unit
normal vector.

Consider the parallel surface

St :=

{
p+ tν =

(
1 +

t

r

)
p ; p ∈ S = S2(r)

}
,

which is the sphere ov radius (1 + t/r). Then

Area of St − Area of S = 4π (r + t)
2 − 4πr2 = 8πrt+O(t2).
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catenoid Enneper’s helicoid

Figure 1: Minimal surfaces (cf. [UY17])

unduloid nodoid

Figure 2: Delaunay’s surfaces (constant mean curvature) (cf. [UY17])

Since the mean curvature H is constant, Proposition 7.3 yields that

8πrt = −2t

∫∫
S

H dA = −2tH(area of S) = −t× 8πr2H.

Hence the mean curvature (with respect to the outward unit normal) is −1/r.
Similarly, the mean curvature with respect to the inward unit normal is 1/r.

Example 7.10 (The cylinder). Let S be a circular cylinder of radius r whose axis is the vertical
axis of R3:

S = {x = (x, y, z) ; x2 + y2 = r2}.
Since rotations around the z-axis and vertical translations acts on S transitively, the mean curva-
ture is constant. The same argument as in Example 7.9 works for a finite strip S′ := {(x, y, z) ∈
S ; 0 5 z 5 1}, for example, and one can deduce the mean curvature with respect to outward
(resp. inward) unit normal is −1/(2r) (resp. 1/2r).

Question 7.11. Are there any other constant mean curvature surfaces than the “trivial” examples
above?

7.4 Constant mean curvature surfaces

There are number of examples of constant mean curvature, see Figures 1 and 2.
On the other hand, the following uniqueness theorems are obtained in the middle of 20th

century. Here, a closed surface means an immersion p : S → R3 of a compact 2-manifold without
boundary.
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Figure 3: Wente torus

Fact 7.12 (A. D. Alexandrov[Ale58]). The only closed surfaces of constant mean curvature without
self-intersections are the round spheres.

Fact 7.13 (H. Hopf [Hop53]). The only closed surfaces of constant mean curvature whose genus
zero are the round spheres.

Then the following problem arises:

Question 7.14 (Hopf’s problem). Are there closed surfaces of constant mean curvature other than
the round spheres.

In 1986, H. Wente constructed constant mean curvature torus [Wen86a] (see Figure 3). Besides,
N. Kapouleas also gave examples of constant mean curvature surfaces of genus = 2 [Wen86b, BK14].
These two results are obtained by quite different methods. In this lecture, an outline of Wente’s
construction is introduced as an application of the fundamental theorem for surface theory.

7.5 Wente torus

In this section, we outline the construction of constant mean curvature tori according to Wente
[Wen86a].

Definition 7.15. A function f defined on R2 is said to be doubly periodic if there exists a pair
{v1,v2} of linearly independent vectors in R2 such that

(7.1) f(x+ v1) = f(x+ v2) = f(x)y

holds for any x ∈ R2. The basis {v1,v2} is called the period of f . n

Remark 7.16. If f : R2 → R is doubly periodic with period {v1,v2},

f(x+m1v1 +m2v2) = f(x) x ∈ R2

holds for all (m1,m2) ∈ Z2. In other words, the function f is invariant under the action of the
abelian group

Γ := Zv1 ⊕ Zv2

on R2 as translations.
Since the quotient space T := R2/Γ is a smooth 2-manifold diffeomorphic to the torus, the

doubly periodic function f is considered as a function on T .
So our goal is

• to construct a doubly periodic constant mean curvature immersion p : R2 → R3.

For the construction, we apply the fundamental theorem for surface theory:
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Proposition 7.17. Let σ : R2 → R be a doubly periodic function with period {v1,v2}. If σ satisfies

(7.2) ∆σ = σuu + σvv = −1

2
sinh 2σ,

there exists a parametrized surface p : R2 → R3 with

(7.3) ds2 = e2σ(du2 + dv2), II =
1

2

(
(e2σ + 1)du2 + (e2σ − 1)dv2

)
,

whose mean curvature is identically 1/2. Moreover, there exist matrices Ri ∈ SO(3) and vectors
ai ∈ R3 (i = 1, 2) such that

(7.4) p(x+ vi) = Rip(x) + ai (i = 1, 2)

holds for all x ∈ R2.

Proof. Exercise 6-2 yields the existence of p with (7.3). Moreover, since σ(x+ vi) = σ(x), p(x+
vi) and p(x) have common first and second fundamental forms. Hence the uniqueness of the
fundamental theorem implies the existence of Ri and ai as (7.4).

In [Wen86a, Section IV], Wente constructed the solutions of (7.2) as follows:

Let a and b be positive numbers, and set Ω = [0, a] × [0, b] ⊂ R2, which is a closed
rectangle. First, consider the boundary value problem

∆σ = −1

2
sinh 2σ on Ω, σ = 0 on ∂Ω, σ > 0 on Ωo,

where Ωo is the interior of Ω. Then by reflecting this solution about boundaries, one
can extend σ on whole R2, and the resulting function is doubly periodic with period
{(2a, 0), (0, 2b)}.

Observing the symmetries of σ, one can deduce that R2 = id, ai = 0 (i = 1, 2), and

R1 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ,

where θ = θ(a, b) is a real number. Moreover, one can show that θ is a non-constant continuous
function in (a, b). Hence there exists (a, b) such that θ = θ(a, b) ∈ 2πQ. For such (a, b), Rm

1 = id
for some integer m. This means that p is {(ma, 0), (0, b)}-periodic, which yields the example.

After Wente, a lot of results related Wente-type tori are obtained. See, for example, [Abr87,
Wal87, PS89].


