Introduction

This is a first half of two series of lectures, Advanced Topics in Geometry A1 and B1, in which the
fundamental theorem for surface theory and its applications are treated.

Throughout this lecture, object of our interest is “surfaces in Euclidean 3-space”. The goal is
to give an comprehensive proof of the fundamental theorem for surface theory ([UY17, Theorem
17.2, see also Appendi B.10]). To accomplish the proof, mathematical tools including the theory
of ordinary differential equations and the Frobenius intebrability theorem are expalined.

An aim of the lectures for students is to observe mathematical view around undergraduate
calculus and linear algebra.

11. April, 2025.
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1 Overview

FEuclidean space

In this lecture, we denote by R™ the n-dimensional Fuclidean space with canonical inner product

(0

Mo Y1
(1.1) <$7y>:f'3Ty=$1y1+"'+$nyn for x= S, Y= : e R,

Tn Yn

here, we regard an element of R™ as a column vector, and ()7 denotes the matrix transposition.
Set!

(1.2) Izl :==V(z,2),  d@y):=[y-=] (z,yecR")

which is called the norm of @, and the distance of x and y, respectively.
A map f: R"™ — R"” is called isometry if

(1.3) d(f(z), f(y)) = d(z,y)
holds for any & and y € R".

Definition 1.1. An n x n real matrix R is said to be an orthogonal matriz if RT R = id holds,
where id is the n x n identity matriz.

The determinant of an orthogonal matrix R is 1 or —1. We denote by O(n) the set of n x n
orthogonal matrices, and

(1.4) SO(n) :={R € 0O(n); det R = 1}.
Fact 1.2. A map f: R™ = R" is isometry if and only if it is written in the form
(1.5) f(x)=Rzx+a (ReO(n),acRk").

If R in (1.5) is a member of SO(n), f is said to be orientation preserving.

The Fundamental Theorem for surface Theory

Our object in this lecture is surfaces in Euclidean 3-space. The simplest question is:
Question 1.3. What quantity determines a shape of surface?

It is necessary for mathematical formulation of this question to express the surface. Among
several ways to explain surfaces, we regard a surface as a parametrization, that is, a map 2

F:U 3 (u,v) = fu,v) € R3,

where U is a domain 2of R2.

11. April, 2025. Revised: 25. April, 2025 (Ver. 2)
1« A := B” means that “A is defined by B”.
2Unless confusion, points in the source domain are represented by row vectors.
3A domain is a connected open subset U C R™.
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Example 1.4.  « Set U := (-7, m) x (=%, %) and

COS U COS ¥
f:U3 (u,v) = f(u,v) = | sinucosv | € R?
sin v

is a parametrization of the unit sphere in R®. The parameter u (resp. v) represents the
longitude (resp. the latitude) of the point of the sphere.

e Set V:=(—m,7) xR and

cos ssecht
g:V 3 (s,t)—g(s,t)= | sinssecht | € R
tanht

Then g parametrizes the unit sphere, and the st-plane is regarded as the Mercator’s world
map.

Then the following “fundamental theorem” is one of the answer:
Theorem (The Fundamental Theorem for surface theory). Let

o U CR? be a simply connected domain,

o I be a positive definite symmetric quadratic form on U

e II be a symmetric quadratic form on U.

Assume I and II satisfy the Gauss and Codazzi equations. Then there exists a surface f: U — R3
whose first and second fundamental forms are I and II, respectively.
Moreover, such an f is unique up to orientation preserving isometry of R>.

The undefined words in the statement, and mathematical meanings of the theorem will be
explained through the lecture, and our goal is to prove this theorem.

Commutativity of partial derivatives

One of the most important fact in undergraduate calculus is the following “commutativity of partial
derivatives”.

Theorem 1.5. Let f: U — R be a function defined on a domain U of R? and fix a point
p = (u,v) € U. If the second derivative 02 f /(0zdy) = fy. and 8 f /(Oydx) = fu, are both defined
on U and continuous at p, then
0 f
J0xdy

2
1) = 5o @)

holds.
Proof. Take (h, k) € R? satisfying (u + th,v + sk) € U for all ¢, s € [0,1]. Let
g(hak) = f(u+h,v+k) - f(u,erk) - f(u+h,7}) +f(u,v).

Since the partial derivative f, exists on U, the function of one variable Fi(t) := g(th, k) is differ-
entiable on 0 < ¢ £ 1. Then the mean value theorem implies that there exists 6; = 61 (h, k) with
0 < 61 < 1 such that

g(h,k) = Fy(1) = Fy(1) = Fy(0) = F{(61) = (fu(u+61h,0+ k) — fulu+61h,0))h = Fy(1)h,
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where Fy(s) := fy(u + 01h, v+ sk) — fo(u+ 61h,v) (0 = s £ 1). Since (fy), exists on U, Fy is
differentiable on 0 £ s < 1. So, applying mean value theorem again, there exists 6o = 05(h, k) €
(0,1) such that

Summing up, there exists 61, 83 € (0,1) depending on h and k such that

(1.6) g(h, k) = foy(u+61h,v + 02k)Rk.

On the other hand, changing roles of h and k, we know that there exist ¢1, w2 € (0,1) such that
(1.7) g(h, k) = fye(u+ @1h, v+ pok)hk.

Then
fa:u(u + thav + 92k) = fym(u + 801]7‘7'0 + (PQk)

whenever hk # 0. Here, taking limit (h, k) — (0,0), we have
(u+ 01h, v+ 02k) — (u,v), (u+ p1h,v + p2k) = (u,v)

because 0;, ¢; € (0,1) for j = 1,2. Thus, by continuity of f,, and f,,, we have fu,(u,v) =
fya(u, v). a

Definition 1.6. A function f defined on a domain U C R? is said to be
(1) of class CV if it is continuous on U,
(2) of class C if there exists a partial derivative f, and fyon U, and both of them are continuous,

(3) of class C™ (r = 2,3,...) if it is of class C"~! and all of the (r — 1)-st partial differentials are
of class C', and

(4) of class C* if it is of class C" for arbitrary non-negative integer r.

Using these terms, we have

Corollary 1.7. If a function f: U — R defined on a domain U of R? is of class C?, then foy = fyz
holds on U.

In this lecture, functions are assumed to be of class C*°. So partial differentials are always
commutative.
Inverse of the commutativity—Poincaré lemma

A differential 1-form, or a 1-form defined on a domain U C R? is the form
a = a(z,y)dz + b(z,y) dy

where a and b are C'*°-functions defined on U. The total differential, or simply the differential, of
C*>-function f defined as

df = fode + f, dy

is a typical example of differential forms.
A differential 2-form is a form
w=c(z,y)dx ANdy

where ¢ is a C*°-function. The exterior differential da
da =d(adz +bdy) = (by — ay) dz Ady

of 1-form a = adx + bdy is a typical example.
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Lemma 1.8. Let f be a C*-function defined on a domain U C R%. Then d(df) = 0 holds.
Proof. d(df):d(fwdx+fydy):(fya:_fa:y)dx/\dyzo- O

Theorem 1.9 (Poincaré lemma). Let U be a simply connected domain, and « a differential 1-
form defined on U. If da = 0, then there exists a C°° function f defined on U such that df = a.

The definition, fundamental properties of simple connectedness will be given in Section 3.
Ezercises
1-1 Let f(x,y) = e*® cosy, where a is a constant. Find a function g(z,y) satisfying
9o =—fy.  gy=1Js  9(0,0)=0.
1-2 Let U =R?\{(t,0); t <0} and consider a 1-form

—y z
dx
r? +y? Ty y?

a=a(z,y)dx + b(z,y) dy := dy.

on U. Take a point P = (rcosf,rsinf) € U (r > 1,0 < 6 < 7), and two curves

cr(t) := (z1(t),y1(t)) = (cost,sint) (05t£0),
ca(s) := (z2(s),y2(s)) = (scosb, ssin) (1<s<r),

whose union gives a curve joining (1,0) and P. Compute the line integral

/Cluc2 . /Oo (a(m(t), y1 (1)) % dt + b(z1 (1), y1 () % dt)

dx

+ /; <a(l'2(5)vy2(5)) de ds + b(z2(s),y2(s)) @ ds) .

s ds
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2 Ordinary Differential Equations

The fundamental theorem for ordinary differential equations.
Consider a function
(2.1) f:IxU>s(tx)— f(t,x) eR™

of class C', where I C R is an interval and U C R™ is a domain in the Euclidean space R™. For
any fixed tg € I and xy € U, the condition

(2.2) %w(t) = f(t. (1)), x(ty) = xo

of an R™-valued function ¢ — «(t) is called the initial value problem of ordinary differential
equation, ODE for short, for unknown function @(¢). For a subinterval J of I with t; € I, a
function @: J — U satisfying (2.2) is called a solution of the initial value problem.

Fact 2.1 (The existence theorem for ODE’s). Let f: I x U — R™ be a C'-function as in (2.1).
Then, for any o € U and ty € I, there exists a positive number ¢ and a C-function x: I N (tg —
g, to +¢) = U satisfying (2.2).

Take two solutions x;: J; = U (j = 1,2) of (2.2) defined on subintervals J; C I containing .
Then the function x5 is said to be an extension of @y if J; C Jy and x5(t) = x1(¢) for all ¢t € J;.
A solution « of (2.2) is said to be mazimal if there are no non-trivial extension of it.

Fact 2.2 (The uniqueness for ODE’s). The mazimal solution of (2.2) is unique.

Fact 2.3 (Smoothness of the solutions). If f: I x U — R™ is of class C" (r = 1,...,00), the
solution of (2.2) is of class C"™*1. Here, oo + 1 = 00, as a convention.

Let V C R* be another domain of R¥ and consider a C*°-function
(2.3) h:IxUxV >3 (t,z;a) = h(t,z; ) € R™.

For fixed ty € I, we denote by x(t; xo, o) the (unique, maximal) solution of (2.2) for f(t,z) =
h(t,x; ). Then

Fact 2.4. The map (t,xo; @) — x(t; o, ) is of class C.
Example 2.5. (1) Let m =1, I =R, U = R and f(¢t,z) = Az, where X is a constant. Then
x(t) = zg exp(At) defined on R is the maximal solution to

d
%x(t) = f(t,x(t)) = Ax(t), x(0) = wo.

(2) Let m =2, I =R, U =R? and f(t; (z,y)) = (y, —w?x), where w is a constant. Then

z(t)\ _ [ wocoswt+ Lsinwt
y(t))  \ —zowsinwt + yg coswt
is the unique solution of

a0 = () G =)

defined on R. This equation can be considered as a single equation

d? dx
Cnlt) = —Pa(t), w(0) =20, () =yo

of order 2.
25. April, 2025.
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(3) Let m=1,I =R, U =R and f(t,z) = t(1+ 2?). Then x(t) = tan ? defined on (—/7, \/7)
is the unique maximal solution of the initial value problem

dx
= (1 2 =0.
o t(1 4 x%), 2(0) =0

Linear Ordinary Differential Equations.

The ordinary differential equation (2.2) is said to be linear if the function (2.1) is a linear function
in x, that is, a linear differential equation is in a form

d

where A(t) and b(t) are m X m-matrix-valued and R™-valued functions in ¢, respectively.

For the sake of later use, we consider, in this lecture, the special form of linear differential
equation for matrix-valued unknown functions as follows: Let M,,(R) be the set of n x n-matrices
with real components, and take functions

2:1— M,(R), and B: I — M,(R),

where I C R is an interval. Identifying M, (R) with R”Q, we assume {2 and B are continuous
functions (with respect to the topology of R™ = M, (R)). Then we can consider the linear
ordinary differential equation for matrix-valued unknown X (¢) as

dX (t)
dt

(2.4) — X(OQW) +B(t),  X(ty) = X,

where X is given constant matrix.

Then, the fundamental theorem of linear ordinary equation states that the mazimal solution
of (2.4) is defined on whole I. To prove this, we prepare some materials related to matrix-valued
functions.

Preliminaries: Matrix Norms.

Denote by M, (R) the set of n x n-matrices with real components, which can be identified the
vector space R™. In particular, the Euclidean norm of R™ induces a norm

(2.5) | X|g =1/tr(XTX) =

on M, (R). On the other hand, we let

(2.6) | X |m ::sup{Ti}T';'vER”\{O}}y

where | - | denotes the Euclidean norm of R”.
Lemma 2.6. (1) The map X — |X|m is a norm of M, (R).
(2) For X, Y € Mu(R), it holds that | XY |y < |X|u |Y a1

(3) Let A = \(X) be the mazimum eigenvalue of semi-positive definite symmetric matriz X7 X.

Then |X|x = VA holds.

4) (1/Vn)IX[e = [X|u = [ X]e.
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(5) The map |- |v: Mu(R) — R is continuous with respect to the Euclidean norm.

Proof. Since | Xv|/|v| is invariant under scalar multiplications to v, we have | X |y = sup{|Xv|; v €
S7=1} where S"~1 is the unit sphere in R”. Since S"~! 3 & — |Az| € R is a continuous function
defined on a compact space, it takes the maximum. Thus, the right-hand side of (2.6) is well-
defined. It is easy to verify that | - [y satisfies the axiom of the norm*.

Since A := XTX is positive semi-definite, its eigenvalues \; (j = 1,...,n) are non-negative
real numbers. In particular, there exists an orthonormal basis [a;] of R™ satisfying Aa; = \ja;
(j=1,...,n). Let X be the maximum eigenvalue of A, and write v = via; + -+ + v,a,. Then it
holds that

(X0, Xv) = M7+ + 202 £\ (v,v),

where ( , ) is the Euclidean inner product of R™. The equality of this inequality holds if and only if v
is the A-eigenvector, proving (3). Noticing that the norm (2.5) is invariant under conjugations X
PTXP (P € O(n)), we obtain | X|g = /A2 + -+ + A2 by diagonalizing X7 X by an orthogonal
matrix P. Then we obtain (4). Hence two norms | - |g and | - |y induce the same topology as
M,,(R). In particular, we have (5). O

Preliminaries: Matriz-valued Functions.

Lemma 2.7. Let X andY be C*°-maps defined on a domain U C R™ into M, (R). Then

0 0X aYy
0 50X
0 0X
7X_1 — —X_liX_l
(3) 8Uj 8uj ’

where X is the cofactor matriz of X, and we assume in (3) that X is a regular matriz.

Proof. The formula (1) holds because the definition of matrix multiplication and the Leibnitz rule,
Denoting ' = 9/0u,;,
O=(@1d)=(X'X)=(X"HX' + (X VX

implies (3), where id is the identity matrix.
Decompose the matrix X into column vectors as X = (x1,...,&,). Since the determinant is
multi-linear form for n-tuple of column vectors, it holds that

(det X)' = det(x}, 2, ..., x,) +det(z1,xh, ..., x,) + - +det(x1, Ta,...,2,).
Then by cofactor expansion of the right-hand side, we obtain (2). O

Proposition 2.8. Assume two C™ matriz-valued functions X (t) and £2(t) satisfy

(2.7) %Et) = X (t)02(¢), X (to) = Xo.
Then
(2.8) det X (t) = (det Xo) exp /1t tr Q2(7) dr

holds. In particular, if Xo € GL(n,R),> then X (t) € GL(n,R) for all t.

4 X |nm > 0 whenever X # O, |aX|m = |a] | X |Mm, and the triangle inequality | X 4+ Y|y < | XM + Y-
5GL(n,R) = {A € M,,(R); det A # 0}: the general linear group.
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Proof. By (2) of Lemma 2.7, we have

%det X(t) = tr (X(t)cu;ft)) = (X()X()2())

= tr(det X (£)£2(t)) = det X (¢) tr 22(t).

Here, we used the relation XX = XX = (det X)id. Hence 4 (p(t)~'det X(t)) = 0, where p(¢) is
the right-hand side of (2.8). O

Corollary 2.9. If Q(t) in (2.7) satisfies tr 2(t) = 0, then det X (t) is constant. In particular, if
Xo € SL(n,R), X is a function valued in SL(n,R) ©.

Proposition 2.10. Assume £2(t) in (2.7) is skew-symmetric for allt, that is, 27 + (2 is identically
O. If Xo € O(n) (resp. Xo € SO(n))7, then X (t) € O(n) (resp. X(t) € SO(n)) for all t.

Proof. By (1) in Lemma 2.7,

d dx dx\ 7
—(xXTy="xT4+ x| =
dt( ) dt + ( dt )

=XOXT + XQTXT = x(2+01)XT = 0.
Hence X X7 is constant, that is, if X € O(n),
XX = X(t) X (to)" = Xo X =id.
If Xy € O(n), this proves the first case of the proposition. Since det A = £1 when A € O(n), the
second case follows by continuity of det X (¢). O

Preliminaries: Norms of Matriz- Valued functions.

Let I = [a,b] be a closed interval, and denote by C°(I, M, (R)) the set of continuous functions
X: I — M,(R). For any positive number &, we define

(2.9) |X || 1,k o= sup {e ™| X (t)|m; t €I}

for X € C°(I,M,,(R)). When k =0, || - ||1,0 is the uniform norm for continuous functions, which
is complete. Similarly, one can prove the following in the same way:

Lemma 2.11. The norm || - ||15 on C°(I,M,(R)) is complete.

Linear Ordinary Differential Equations.

We prove the fundamental theorem for linear ordinary differential equations.

Proposition 2.12. Let £2(t) be a C*-function valued in M, (R) defined on an interval I. Then
for each ty € I, there exists the unique matriz-valued C*-function X (t) = Xy, 1a(t) such that

dx (1)
dt
6SL(n,R) = {A € M, (R); det A = 1}; the special lienar group.

"O(n) = {A € Mp(R); ATA = AAT = id}: the orthogonal group; SO(n) = {A € O(n); det A = 1}: the special
orthogonal group.

(2.10) = X(O)2@),  X(t) =id.
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Proof. Uniqueness: Assume X (¢) and Y (¢) satisfy (2.10). Then

v -x= [ 070 - Xy = [ 00 - xe)ame (=4

to t(]

holds. Take an arbitrary closed interval J C I. Then for an arbitrary ted,

Y (t) = X(t)m = (1))92(7) |y d7 ()| 192(7) [y d
t
- / T () = Xl et 120y dr| < 1Y —XHJ,ksgpmm | e
0 0
sup ; |12 e ekt
= 1Y = X SRR 1 ey X s |2
holds, and hence
N
MY () = X(Ohe £ TPy - x5
Thus, for an appropriate choice of k € R, it holds that
*HY X1k

that is, ||Y — X||sx = 0, proving Y (t) = X (¢) for t € J. Since J is arbitrary, ¥ = X holds on I.
Existence: Take a > Osuch that J := [tg,a] C I, and define a sequence {X;} of matrix-valued
) =

functions defined on T satisfying X (¢) = id and
t
(2.11) Xjpi(t) =id+ | X;(r)2(r)dr (§=0,1,2,...).
to
Then
t
[Xj () = Xs®)h = | 1X5(7) = Xja (7)) | 92(7) ha dr
to
ek}(t*t())
S —7—sup |21 X; — Xjallk,
k[

and hence || X411 — Xj||sr < [|X; — Xj_1][sk, for an appropriate choice of k € R, that is, {X;}
is a Cauchy sequence with respect to || - || ;5. Thus, by completeness (Lemma 2.11), it converges
to some X € C°(J, M, (R)). By (2.11), the limit X satisfies
t
X(to) =id, X)) =id+ [ X(m)02(7)dr.
to
Applying the fundamental theorem of calculus, we can see that X satisfies X'(t) = X (¢)2(¢)
(' = d/dt). By the same argument for a < tg with J = [a,t], existence of the solution on I is
proven.
Finally, we shall prove that X is of class C*°. Since X'(t) = X (¢)£2(t), the derivative X’ of
X is continuous. Hence X is of class C', and so is X (¢)£2(¢). Thus we have that X’(¢) is of class
C!', and then X is of class C?. Iterating this argument, we can prove that X (¢) is of class C" for
arbitrary r. O

Corollary 2.13. Let 2(t) be a matriz-valued C*°-function defined on an interval I. Then for
each to € I and Xy € M, (R), there exists the unique matriz-valued C* -function Xy, x,(t) defined
on I such that

(2.12) %t(t) =X()020), X(to)=Xo (X(t):= Xy, x,())

In particular, X, x,(t) is of class C* in Xy and t.
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Proof. We rewrite X (t) in Proposition 2.12 as Y (¢) = Xy, ia(¢). Then the function
(2.13) X(t) := XoY (t) = XoXt,,a(t),

is desired one. Conversely, assume X (¢) satisfies the conclusion. Noticing Y (¢) is a regular matrix
for all ¢ because of Proposition 2.8,

satisfies

X Y
W _ d—Y‘l — Xy—ld—y—l =Xy ' -Xy-lypy-!t=0,
dt dt dt

that is, W is constant, and hence
W (t) = W(to) = X(to)Y (to) " = Xo.
So the uniqueness is obtained. The final part is obvious by the expression (2.13). O

Proposition 2.14. Let 2(t) and B(t) be matriz-valued C*-functions defined on I. Then for each
tg € I and Xy € M,,(R), there exists the unique matriz-valued C™-function defined on I satisfying

dX (t)

(2.14) =

= X(O)2() + B, X(to) = Xo.

Proof. Rewrite X in Proposition 2.12 as Y := X} jq. Then

t

(2.15) X(t) = (Xo + [ B(r)Y r) dT) Y (t)

to
satisfies (2.14). Conversely, if X satisfies (2.14), W := XY ~! satisfies
X' =WY+WY'=WY+WYR, XQ2+B=WY2+B,

and then we have W’ = BY ~1. Since W (t() = X,

W= Xo+ /t B(r)YY(r)dr.

to

Thus we obtain (2.15). O

Theorem 2.15. Let I and U be an interval and a domain in R™, respectively, and let 2(t, o) and
B(t, &) be matriz-valued C*-functions defined on I xU (o = (a1, ...,am)). Then for eachty € I,
a € U and Xog € M, (R), there exists the unique matriz-valued C™-function X (t) = X4y x,.a(t)
defined on I such that

dX (t)

(2.16) 7

= X(1)Q(t, ) + B(t,a),  X(to) = Xo.

Moreover,
I xIxM,(R)xUS> (t,t9, Xo, ) = Xy x,a(t) € M, (R)

is a C°°-map.
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Proof. Let Q(t,&) := Q2(t + to, &) and B(t,&) = B(t + to, @), and let X (t) := X (t + to). Then
(2.16) is equivalent to

d);(t) = X(1)Q(t, &) + B(t,&), X(0) = Xo,

(2.17)

where & := (tg, 1, .., ). There exists the unique solution X (t) = )?07)(0,@(15) of (2.17) for
each & because of Proposition 2.14. So it is sufficient to show differentiability with respect to the
parameter &. We set Z = Z(t) the unique solution of

A ~ -9 OB
(2.18) - _ZQJFXaszJFaTZj’ Z(0) = 0.

Then it holds that Z = 8)?/80@». In particular, by the proof of Proposition 2.14, it holds that

X ([ <, 09(r,&) 0B(r,a)) .
Zaaj</0<X(T) Do, + 9o, >Y1(T)d7>Y(t).

Here, Y (t) is the unique matrix-valued C*°-function satisfying Y'(t) = Y (t)2(t, &), and Y (0) = id.

Hence X is a C*°-function in (¢, &). O

An Application: Fundamental Theorem for Space Curves.

A C*®-map v: I — R3 defined on an interval I C R into R3 is said to be a regular curve if
4 # 0 holds on I. For a regular curve 7(t), there exists a parameter change ¢t = t(s) such that
A(s) := ~(t(s)) satisfies |¥'(s)| = 1. Such a parameter s is called the arc-length parameter.
Let v(s) be a regular curve in R? parametrized by the arc-length satisfying 4" (s) # 0 for all s.

Then "(s)

(s

e(s) :==7'(s), n(s) i= ———=, b(s) :=e(s) x n(s)

17" (s)]
forms a positively oriented orthonormal basis {e,n, b} of R? for each s. Regarding each vector as
column vector, we have the matrix-valued function

(2.19) F(s) := (e(s),n(s),b(s)) € SO(3).
in s, which is called the Frenet frame associated to the curve . Under the situation above, we set
K(s):="()] >0,  7(s) == —(b(s).n(s)),

which are called the curvature and torsion, respectively, of «. Using these quantities, the Frenet
frame satisfies

0 —k O
d
(2.20) —}—:}"Q, =k 0 -7
ds 0
T 0

Proposition 2.16. The curvature and the torsion are invariant under the transformation x —
Az + b of R? (A € SO(3), b € R3). Conversely, two curves v1(s), v2(s) parametrized by arc-
length parameter have common curvature and torsion, there exist A € SO(3) and b € R3 such that
")/2 = A’)/l + b

Proof. Let k, T and F; be the curvature, torsion and the Frenet frame of v, respectively. Then
the Frenet frame of 75 = Ay; +b (A € SO(3), b € R3) is F» = AF;. Hence both F; and F; satisfy
(2.20), and then v; and 2 have common curvature and torsion.
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Conversely, assume ; and 5 have common curvature and torsion. Then the frenet frame Fi,
F> both satisfy (2.20). Let F be the unique solution of (2.20) with F(to) = id. Then by the
proof of Corollary 2.13, we have F;(t) = F;(to)F(t) (j = 1,2). In particular, since F; € SO(3),
Fo(t) = AF1(t) (A := Fa(to)Fi(to)~' € SO(3)). Comparing the first column of these, v4(s) =
A~} (t) holds. Integrating this, the conclusion follows. O

Theorem 2.17 (The fundamental theorem for space curves).

Let k(s) and 7(s) be C*°-functions defined on an interval I satisfying k(s) > 0 on I. Then there
exists a space curve y(s) parametrized by arc-length whose curvature and torsion are k and T,
respectively. Moreover, such a curve is unique up to transformation € — Ax +b (A € SO(3),

b e R3) of R3.

Proof. We have already shown the uniqueness in Proposition 2.16. We shall prove the existence:
Let £2(s) be as in (2.20), and F(s) the solution of (2.20) with F(sg) = id. Since 2 is skew-
symmetric, F(s) € SO(3) by Proposition 2.10. Denoting the column vectors of F by e, n, b, and
let

o) 5= [ elo)do

S0

Then F is the Frenet frame of v, and k, and 7 are the curvature and torsion of v, respectively. [

Ezxercises

2-1 Find the maximal solution of the initial value problem

d
—=all-a), () =a,
where a is a real number.

2-2 Let x = z(t) be the maximal solution of an initial value problem of differential equation

A%z . dx
W = —SsInwz, x(O) = 0, E(O) = 2.
dx T
e Sh hat — = 2cos —.
Show that i cos2

o Verify that x is defined on R, and compute lim;_, 4 2(t).

2-3 Find an explicit expression of a space curve y(s) parametrized by the arc-length s, whose
curvature k and torsion 7 satisfy

o
VAL +57)

R=T =



Bibliography

[UY17] Masaaki Umehara and Kotaro Yamada, Differential geometry of curves and surfaces, World
Scientific, 2017.

25



Glossary

1-form 57 1-F£3K, 3
arc-length parameter JIEE, 11

column vector #|\X2 hv 1,7
commutativity FIHE, 2
curvature B3, 11

determinant 175, 1

differential 2-form 843 2-#2X, 3
differential form DR, 3
differential one form % 1-F¢3%, 3
differential #57, 3

distance HAHE, 1

domain TEIH, 1

eigenvalue [EHH, 7
Euclidean space 2—2 U v FZEf], 1
exterior differential #M# 57, 3

Frenet frame 7L #, 11
general linear group (GL(n,R)) —f&HRIEHE, 7

identity matrix H{1751, 1
initial value problem #JEAMERE, 5
inner product PF#, 1

isometry FHFREH, FREH 1

latitude #&FE, 2

linear function 1 XXEA%K, 6

linear ordinary differential equation KR #73
JitEx, 6

longitude R, 2

map B4R, 1

matrix 1751, 1

mean value theorem FEfHD EH, 2
Mercator’s world map X /L7 b LD HEFHIK], 2

norm /LA, 1
ordinary differential equation HM 2 HIEX, 5

orientation preserving A = Z{&D, 1
orthogonal group (O(n)) ERHE, 8
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orthogonal matrix B35, 1
parametrization %7 X — X IR, 2
partial derivative fRIH7>, IREREEL, 2
Poincaré lemma K7 > L DH#iE, 4

regular curve 1EHIBRAR, 11
regular matrix 1ERI{T5, 7
row vector TX% kb, 1

simply connected BijEAE, 4

skew-symmeetric matrix ZRATH, TXFRATH,
8

solution fi#, 5

space curve ZE[EHIAR, 11

special linear group (SL(n,R)) RERIRIERE, 8

special orthogonal group (SO(n)) FFFREARHEE, 8

sphere EKTH, 2

surface HHH, 1

torsion R, 11
total differential 2%, 3
transposition ¥5&, 1

unknown function ARFIEIEL, 5



