Advanced Topics in Geometry B1 (MTH.B406)

Hilbert's theorem

Kotaro Yamada kotaro@math.sci.isct.ac.jp

http://www.official.kotaroy.com/class/2025/geom-bi

Institute of Science Tokyo

2025/07/11

Exercise 4-1

regularity.

Problem

The constant function $\theta(u,v)=0$ is a solution of the sine-Gordon equation $\theta(u)=0$ although it does not satisfy the condition $0<\theta<\pi$. In this case, explain what happens on the solution of the Gauss-Weingarten equation and resulting "surface" p(u,v).

The Gauss-Weingarten equation

Corresponding "surface"

$$dp = p_u du + p_v dv = \cos \frac{\theta}{2} e_1 du + \sin \frac{\theta}{2} e_2 dv$$

$$= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} du$$

$$\Rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ straight line.}$$

$$\Rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ straight line.}$$

$$\Rightarrow V \text{ points}$$

$$\Rightarrow v \text{ are simpley}$$

Exercise 4-2

Let $\theta = \theta(x, y)$ be a solution of the sine-Gordon equation $\overline{\theta_{xy}} = \sin \theta$. Assume a function φ satisfies

where a is a non-zero constant. Prove that arphi is also a solution of the sine-Gordon equation.

$$\varphi_{xy} = sin \varphi$$

9: known) => the compatibility:

Q and A

Q: For Exercise 4-2, I think it is enough if θ is of class C^2 (or C^∞), but you assume $\theta_{xy}=\sin\theta$. Is it because you want to emphasize that we can find a new φ from θ that satisfies the sine-Gordon equation?

Exercise 4-2

0: sol. of sine Gorden 50 is 9 0 mg

$$\cdot \quad \left(\frac{\varphi - \theta}{2}\right)_x = a\sin\frac{\varphi + \theta}{2}, \qquad \left(\frac{\varphi + \theta}{2}\right)_y = \frac{1}{a}\sin\frac{\varphi - \theta}{2},$$

 $example 0 = 0 ext{ (vacuum)}$

 $\Rightarrow \varphi(x,y)$

no pseudospherical suface

· psondosphere if a = Il

· Doni's pseudosphe

Bäcklund transformation

▶ A transformation of solutions of the sine-Gordon equation.

intograble system

A transformation of surfaces.

psendusphical

Bäcklund's theorem

Definition

Let p(u,v) be a parametrization of a surface. A parametrized surface $\tilde{p}(u,v)$ is a Bäcklund transformation of p if it satisfies

- $|X| = \emptyset \neq 0$ is constant,
- ightharpoonup X(u,v) tangent to the surface p at p(u,v),
- ightharpoonup X(u,v) tangent to the surface \tilde{p} at $\tilde{p}(u,v)$,
- ▶ the angle (b) f the unit normal ν of p and $\tilde{\nu}$ of \tilde{p} is constant, where $X := \tilde{p} p$.

Theorem (Bäcklund)

If a Bäcklund transformation of a surface exists, the Gaussian curvature K the surface is constant $K=-\sin^2\delta/r^2$. Conversely, a surface of constant negative Gaussian curvature admits a Bäcklund transformation.

Example

When $\theta = 0$...

$$\left(\frac{\varphi-\theta}{2}\right)_x = a\sin\frac{\varphi+\theta}{2}, \qquad \left(\frac{\varphi+\theta}{2}\right)_y = \frac{1}{a}\sin\frac{\varphi-\theta}{2},$$

$$\Rightarrow \text{ pseudospher (l-solton)}$$

Do pseudosphorical enfaces

som to have congularities