Advanced Topics in Geometry B1 (MTH.B406)

Hilbert's theorem

Kotaro Yamada kotaro@math.sci.isct.ac.jp

http://www.official.kotaroy.com/class/2025/geom-b1

Institute of Science Tokyo

2025/07/11

Exercise 4-1

Problem

The constant function $\theta(u,v)=0$ is a solution of the sine-Gordon equation $\theta_{uu}-\theta_{vv}=\sin\theta$ although it does not satisfy the condition $0<\theta<\pi$. In this case, explain what happens on the solution of the Gauss-Weingarten equation and resulting "surface" p(u,v).

The Gauss-Weingarten equation

$$\mathcal{F}_{u} = \mathcal{F}\Omega = \mathcal{F} \begin{pmatrix} 0 & -\theta_{v}/2 & -\sin\frac{\theta}{2} \\ \theta_{v}/2 & 0 & 0 \\ \sin\frac{\theta}{2} & 0 & 0 \end{pmatrix},$$
$$\mathcal{F}_{v} = \mathcal{F}\Lambda = \mathcal{F} \begin{pmatrix} 0 & -\theta_{u}/2 & 0 \\ \theta_{u}/2 & 0 & \cos\frac{\theta}{2} \\ 0 & -\cos\frac{\theta}{2} & 0 \end{pmatrix}.$$
$$\boxed{\theta_{uu} - \theta_{vv} = \sin\theta}$$

Corresponding "surface"

$$dp = p_u du + p_v dv = \cos \frac{\theta}{2} e_1 du + \sin \frac{\theta}{2} e_2 dv$$

Exercise 4-2

Let $\theta=\theta(x,y)$ be a solution of the sine-Gordon equation $\theta_{xy}=\sin\theta$. Assume a function φ satisfies

$$\left(\frac{\varphi-\theta}{2}\right)_x = a\sin\frac{\varphi+\theta}{2}, \qquad \left(\frac{\varphi+\theta}{2}\right)_y = \frac{1}{a}\sin\frac{\varphi-\theta}{2},$$

where a is a non-zero constant. Prove that φ is also a solution of the sine-Gordon equation.

Q and A

Q: For Exercise 4-2, I think it is enough if θ is of class C^2 (or C^{∞}), but you assume $\theta_{xy}=\sin\theta$. Is it because you want to emphasize that we can find a new φ from θ that satisfies the sine-Gordon equation?

Exercise 4-2

$$\left(\frac{\varphi-\theta}{2}\right)_x = a\sin\frac{\varphi+\theta}{2}, \qquad \left(\frac{\varphi+\theta}{2}\right)_y = \frac{1}{a}\sin\frac{\varphi-\theta}{2},$$

Bäcklund transformation

- A transformation of solutions of the sine-Gordon equation.
- A transformation of surfaces.

Bäcklund's theorem

Definition

Let p(u,v) be a parametrization of a surface. A parametrized surface $\tilde{p}(u,v)$ is a Bäcklund transformation of p if it satisfies

- $|X| = r \neq 0$ is constant,
- ullet X(u,v) tangent to the surface p at p(u,v),
- ullet X(u,v) tangent to the surface $ilde{p}$ at $ilde{p}(u,v)$,
- \bullet the angle δ of the unit normal ν of p and $\tilde{\nu}$ of \tilde{p} is constant,

where $X := \tilde{p} - p$.

Theorem (Bäcklund)

If a Bäcklund transformation of a surface exists, the Gaussian curvature K the surface is constant $K=-\sin^2\delta/r^2$. Conversely, a surface of constant negative Gaussian curvature admits a Bäcklund transformation.

Example

When $\theta = 0$...

$$\left(\frac{\varphi-\theta}{2}\right)_x = a\sin\frac{\varphi+\theta}{2}, \qquad \left(\frac{\varphi+\theta}{2}\right)_y = \frac{1}{a}\sin\frac{\varphi-\theta}{2},$$