Advanced Topics in Geometry B1 (MTH.B406)

Hilbert's theorem

Kotaro Yamada kotaro@math.sci.isct.ac.jp

http://www.official.kotaroy.com/class/2025/geom-b1

Institute of Science Tokyo

2025/07/11 (2023/04/25 訂正)

Today's Goal

Theorem (Hilbert, 1901)

There exists no complete pseudospherical surface.

a pseudospherical surface: K = -1.

Completeness

Definition

A Riemannian manifold (M,ds^2) is $\underline{\text{complete}}$ if the induced distance function d_{ds^2} is complete.

Completeness

- (M, ds^2) : a Riemannian manifold;
- $\gamma \colon [a,b] \to M$: a curve.
- $\mathcal{C}_{P,Q}$: the set of curves of M joining P and Q.

Definition (Length)

$$\mathcal{L}_{ds^2}(\gamma) := \int_a^b |\gamma'(t)| \, dt, \quad ext{where} \quad |\gamma'(t)| = \sqrt{ds^2(\gamma'(t), \gamma'(t))}.$$

Completeness

Definition (Distance)

$$d_{ds^2}(P, Q) := \inf \{ \mathcal{L}_{ds^2}(\gamma) ; \gamma \in \mathcal{C}_{P,Q} \},$$

• Fact: d_{ds^2} is a distance on M.

Definition

A Riemannian manifold (M,ds^2) is $\underline{\text{complete}}$ if the induced distance function d_{ds^2} is complete.

Example

ullet \mathbb{R}^2 : the Euclidean plane

• $\mathbb{R}^2 \setminus \{(0,0)\}$

The hyperbolic plane

$$H^2 := \{(x,y); y > 0\}, \qquad ds^2 = \frac{dx^2 + dy^2}{y^2}$$

Proposition

 (H^2,ds^2) is complete.

Hilbert's theorem

Theorem (Hilbert, 1901)

There exists no complete pseudospherical surface.

Hilbert's theorem

Proof of Hilbert's theorem (Part 1)

• $p: M \to \mathbb{R}^3$: complete immersion of constant Gaussian curvature -1.

Proposition (Global asymptotic Chebyshev net)

There exists a smooth map

$$\pi\colon \mathbb{R}^2 \longrightarrow M$$

such that $\tilde{p}=p\circ\pi\colon\mathbb{R}^2\to\mathbb{R}^3$ has first and second fundamental forms as

$$ds^{2} = dx^{2} + 2\cos\theta \, dx \, dy + dy^{2}, \quad II = 2\sin\theta \, dx \, dy,$$
$$0 < \theta < \pi, \quad \theta_{xy} = \sin\theta$$

Proof of Hilbert's theorem (Part 2)

Proposition

There exists no smooth function $\theta \colon \mathbb{R}^2 \to \mathbb{R}$ such that

- $\theta_{xy} = \sin \theta$
- $0 < \theta < \pi$.

Proof of Hilbert's theorem (Part 2a)

- $\theta_{xy} = \sin \theta$,
- $x_1 < x_2$, $y_1 < y_2$

Lemma

$$\theta(x_2, y_2) - \theta(x_1, y_2) = \theta(x_2, y_1) - \theta(x_1, y_1) + \int_{y_1}^{y_2} dy \int_{x_1}^{x_2} dx \sin \theta(x, y).$$

Proof of Hilbert's theorem (Part 2b)

- $\theta_{xy} = \sin \theta$,
- ullet $x\mapsto heta(x,0)$ is strictly increasing on $[0,x_1]$

Proof of Hilbert's theorem (Part 2c)

- $x \mapsto \theta(x,0)$ is strictly increasing on $[0,x_1]$
- $x \mapsto \theta(x,y)$ is strictly increasing on $[0,x_1]$ for fixed y>0.

Proof of Hilbert's theorem (Part 2d)

- $0 < x_3 < x_2 < x_1$
- $\varepsilon := \theta(x_1, 0) \theta(x_2, 0) > 0$
- $\varepsilon' := \theta(x_3, 0) \theta(0, 0) > 0$

Lemma

There exists $(x_0, y_0) \in (x_3, x_2) \times (0, \infty)$ such that

$$\theta(x_0, y_0) > \pi - \frac{\varepsilon}{2}.$$

Exercise 5-1

Problem

Consider a map

$$p \colon \mathbb{R}^2 \ni (u, v) \longmapsto (v \cosh u, v, v \sinh u) \in \mathbb{R}^3.$$

- Verify that the image $p(\mathbb{R}^2)$ is contained in the cone $\{(x,y,z)\in\mathbb{R}^3\,;\,x^2-y^2-z^2=0\}.$
- ② Is the induced metric $p^*\langle , \rangle$ complete on \mathbb{R}^2 ?

Exercise 5-2

Problem

Prove that the shortest curve (with respect to the canonical Riemannian metric) joining O:=(0,0) and P:=(L,0) (L>0) on the Euclidean plane is the line segment joining them.