Advanced Topics in Geometry B1 (MTH.B406)

Lorentz-Minkowski space

Kotaro Yamada kotaro@math.sci.isct.ac.jp

http://www.official.kotaroy.com/class/2025/geom-b1

Institute of Science Tokyo

2025/07/25

Exercise 5-1

Problem

Consider a map

$$p: \mathbb{R}^2 \ni (u, v) \longmapsto \underbrace{(v \cosh u, v, v \sinh u)} \in \mathbb{R}^3.$$

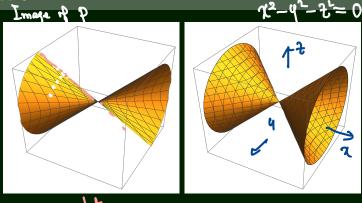
Cm

- 1. Verify that the image $p(\mathbb{R}^2)$ is contained in the cone $\{(x, y, z) \in \mathbb{R}^3 ; x^2 - y^2 - z^2 = 0\}.$
- s the induced metric $p^*\langle \ , \ \rangle$ complete on \mathbb{R}^2 ?

y= v: const (cross section of the image)
with the plane y= v

x = 1 cost U

Exercise 5-1



memplete

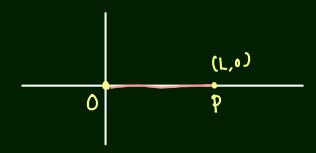
formulation: exercise

incompletenes: lack of points "

Exercise 5-2

Problem

Prove that the shortest curve (with respect to the canonical Riemannian metric) joining O:=(0,0) and P:=(L,0) (L>0) on the Euclidean plane is the line segment joining them.



Let
$$Y(t) = (\pi(t), \eta(t))$$
 $0 \le t \le 1$ be a curve (C^1) $\gamma(t) = 0$ $\gamma(t) = 1 > 0$ $\gamma(t) = 0$ $\gamma(t$

• the line sognet joining 08 P has length L.

the line sognet is a shortest path

converse?

= | x(1) ~ x(0) | = [

$$f(1) = L \Rightarrow Z = \text{should be} = 1$$

$$\Rightarrow O_1 : y(t) = 0 \Rightarrow y : \text{cant } \Rightarrow y = 0$$

$$O_2 : \dot{x}(t) \text{ does not change sign.}$$

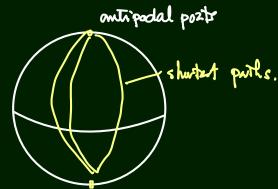
$$(\dot{x} \neq 0)$$

$$\Rightarrow \underline{Y(t)} = (\underline{x}(t), 0)$$
increasing
(in wider some)
non decreasing.
$$\Rightarrow \text{ line sogment.}$$

This argument works for the hyperbolic plane.

(next becture)

Almost works for the sphere.



Recall

pseudosphenical surfaces 4

Problem (Exercise 2-1)

Let $\gamma(t) = (x(t), z(t))$ ($\gamma \in I$) be a parametrized curve on the frying arclingth parameter (x'(t)) $^2+(z'(t))^2=1$ $(t\in I),$ xz-plane satisfying

$$(x'(t))^2 + (z'(t))^2 = 1$$
 $(t \in I),$

where $I \subset \mathbb{R}$ is an interval. Consider a surface

which is a surface of revolution of profile curve γ .

- 1. Show that p_{γ} is pseudospherical if and only if x'' = x
- 2. Can one choose $I = \mathbb{R}$?

