# Advanced Topics in Geometry B1 (MTH.B406)

Lorentz-Minkowski space

Kotaro Yamada kotaro@math.sci.isct.ac.jp

http://www.official.kotaroy.com/class/2025/geom-b1

Institute of Science Tokyo

2025/07/25

## Exercise 5-1

#### **Problem**

### Consider a map

$$p \colon \mathbb{R}^2 \ni (u, v) \longmapsto (v \cosh u, v, v \sinh u) \in \mathbb{R}^3.$$

- Verify that the image  $p(\mathbb{R}^2)$  is contained in the cone  $\{(x,y,z)\in\mathbb{R}^3\,;\,x^2-y^2-z^2=0\}.$
- ② Is the induced metric  $p^*\langle , \rangle$  complete on  $\mathbb{R}^2$ ?

# Exercise 5-1



#### Exercise 5-2

#### **Problem**

Prove that the shortest curve (with respect to the canonical Riemannian metric) joining O:=(0,0) and P:=(L,0) (L>0) on the Euclidean plane is the line segment joining them.

### Recall

# Problem (Exercise 2-1)

Let  $\gamma(t)=ig(x(t),z(t)ig)$  ( $\gamma\in I$ ) be a parametrized curve on the xz-plane satisfying

$$(x'(t))^2 + (z'(t))^2 = 1 (t \in I),$$
 (\*)

where  $I \subset \mathbb{R}$  is an interval. Consider a surface

$$p_{\gamma}(s,t) := (x(t)\cos s, x(t)\sin s, z(t)),$$

which is a surface of revolution of profile curve  $\gamma$ .

- Show that  $p_{\gamma}$  is pseudospherical if and only if x'' = x holds.
- ② Can one choose  $I = \mathbb{R}$ ?

## Exercise 2-1

