5 Hilbert's theorem

Completeness of Riemannian manifolds

Riemannian manifolds. A Riemannian manifold is a manifold equipped with a Riemannian metric ds^2 , that is, for each point $p \in M$, $(ds^2)_P$ gives a (positive definite) inner product of the tangent space T_PM of M at P, and $P \mapsto (ds^2)_P$ satisfies an appropriate smoothness condition³.

Example 5.1. Let $\langle \ , \ \rangle$ be the canonical inner product of \mathbb{R}^n . Identifying $T_P\mathbb{R}^n$ with \mathbb{R}^n , $\langle \ , \ \rangle$ induces the inner product on the tangent space. Thus, \mathbb{R}^n is regarded as a Riemannian manifold with $ds^2 = \langle \ , \ \rangle$, which is called the *Euclidean space*.

Let M be a 2-dimensional manifold and $p: M \to \mathbb{R}^3$ a smooth map⁴. A map p is said to be an immersion if the rank of the differential $(dp)_P$ is 2 for each $P \in M$. If this is the case, setting

$$(ds^2)_P(X_P, Y_P) := \langle dp_P(X_P), dp_P(Y_P) \rangle$$
 $X_P, Y_P \in T_P M$

we obtain the Riemannian metric ds^2 on M, which is called the *induced metric* of \langle , \rangle by p.

In a local coordinate system (U, (u, v)) on M, the map p is considered as an \mathbb{R}^3 -valued function in variables (u, v). Then p is an immersion if and only if the derivatives p_u and p_v are linearly independent at each point on U, that is nothing but the condition for regular parametrization. By using standard notation of manifold theory, p_u and p_v are expressed as

$$p_u = dp \left(\frac{\partial}{\partial u} \right), \qquad p_v = dp \left(\frac{\partial}{\partial v} \right).$$

Hence the induced metric ds^2 is determined by its components

$$E := ds^{2} \left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u} \right) = \left\langle dp \left(\frac{\partial}{\partial u} \right), dp \left(\frac{\partial}{\partial u} \right) \right\rangle = \left\langle p_{u}, p_{u} \right\rangle,$$

$$F := ds^{2} \left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v} \right) = \left\langle p_{u}, p_{v} \right\rangle, \quad G := ds^{2} \left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v} \right) = \left\langle p_{v}, p_{v} \right\rangle.$$

In this sense, we write the induced metric as

$$ds^2 = E du^2 + 2F du dv + G dv^2.$$

which is the first fundamental form of the surface p.

Completeness. Let $\gamma: [a,b] \to M$ be a C^{∞} -curve and $\gamma'(t) \in T_{\gamma(t)}M$ its velocity vector at $\gamma(t)$.

Definition 5.2. The length of the curve γ (with respect to ds^2) is defined by

$$\mathcal{L}_{ds^2}(\gamma) := \int_a^b |\gamma'(t)| dt, \quad \text{where} \quad |\gamma'(t)| = \sqrt{ds^2(\gamma'(t), \gamma'(t))}.$$

For two points P, Q \in M, we denote $\mathcal{C}_{P,Q}$ the set of smooth curves on M joining P and Q. Then it is known (cf. [dC92, Prop. 2.5 in Chap. 7]) that if we define

$$d_{ds^2}(P, Q) := \inf \{ \mathcal{L}_{ds^2}(\gamma) ; \gamma \in \mathcal{C}_{P, Q} \},$$

the function $d_{ds^2}: M \times M \to \mathbb{R}$ satisfies the axiom of distance. Moreover, the topology of M induced by the distance d_{ds^2} coincides with the original topology of M.

We call d_{ds^2} the distance with respect to the metric ds^2 .

^{11.} July, 2025. Revised: 25. May, 2025

³"For any smooth vector fields X, Y on M, the funtion $M \ni P \mapsto (ds^2)_P(X_P, Y_P)$ is smooth."

⁴Although we restrict our arguments into 2-dimensional case, the contents here are valid for higher dimensions.

Definition 5.3. A Riemannian manifold M with a Riemannian metric ds^2 is said to be *complete* if the distance function d_{ds^2} is complete, in other words, any Cauchy sequence with respect to d_{ds^2} converges in M.

Remark 5.4. Completeness is equivalent to each of the following conditions (Hopf-Rinow Theorem, cf. [dC92, Chap. 7]): (1) Any geodesic is defined whole on \mathbb{R} . (2) Any divergent path has infinity length. (3) Any bounded closed subset is compact.

Example 5.5. The Euclidean space \mathbb{R}^n is complete. In fact, induced distance is the usual distance function. On the other hand, $M := \mathbb{R}^2 \setminus \{O\}$ with the canonical metric of \mathbb{R}^2 is incomplete. In fact, the Cauchy sequence $\{(1/n, 0, \ldots, 0)\}$ on M does not converge to any point in M.

The hyperbolic plane. The hyperbolic plane is the Riemannian manifold (H^2, ds^2) , where $H^2 = \{(x, y); y > 0\}$ is the upper-half plane and $ds^2 = (dx^2 + dy^2)/y^2$ (cf. Corollary 1.13), is called the hyperbolic plane. As seen in Section 1, this is a model of the non-Euclidean geometry.

Proposition 5.6. The hyperbolic plane is complete.

Proof. First, we compute the distance of two points aligned on the vertical line: Let $P := (x_1, y_1)$, $Q := (x_2, y_2) \in H^2$. For a curve $\gamma(t) = (x(t), y(t))$ $(0 \le t \le 1)$ in $\mathcal{C}_{P,Q}$,

$$\mathcal{L}_{ds^2}(\gamma) = \int_0^1 \frac{1}{y(t)} \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \, dt \ge \int_0^1 \frac{1}{y(t)} |\dot{y}(t)| \, dt \ge \left| \int_0^1 \frac{\dot{y}(t)}{y(t)} \, dt \right| = \left| \log y(t) \right| \Big|_0^1 = \left| \log \frac{y_2}{y_1} \right|.$$

Then

$$d_{ds^2}(P, Q) \ge \left| \log \frac{y_2}{y_1} \right|$$
 for $P = (x_1, y_1)$, $Q = (x_2, y_2)$.

Let $\{P_n = (x_n, y_n)\}$ be a Cauchy sequence with respect to d_{ds^2} and fix a point O = (0, 1). Since a Cauchy sequence is bounded, there exists a positive number m such that

$$m \ge d_{ds^2}(\mathcal{O}, \mathcal{P}_n) \ge |\log y_n|$$

holds for all n, that is $\{\log y_n\}$ is bounded. Hence there exists positive constants a and b such that $a < y_n < b$ for all n. Here, on the domain $U := \{(x, y) \in H^2 : a < y < b\}$,

$$\frac{1}{h^2}(dx^2 + dy^2) \le ds^2 \le \frac{1}{a^2}(dx^2 + dy^2).$$

Hence the sequence $\{P_n\}$ on U is a Cauchy sequence with respect to the Euclidean metric, and then it converges to a point on the closure \overline{U} of U.

Hilbert's theorem

The purpose of this section is to give the following theorem

Theorem 5.7 (D. Hilbert (1901) [Hil01]). There exists no complete pseudospherical surface.

Existence of a global asymptotic Chebyshev net. Let $p: M \to \mathbb{R}^3$ be a *complete* immersion of 2-dimensional manifold M to \mathbb{R}^3 , and denote by ds^2 the induced metric.

Proposition 5.8. There exists a smooth function $\theta \colon \mathbb{R}^2 \to (0,\pi)$ and a smooth map $\pi \colon \mathbb{R}^2 \to M$ such that $\tilde{p} := p \circ \pi \colon \mathbb{R}^2 \to \mathbb{R}^3$ is an immersion with the first and second fundamental forms as

(5.1)
$$ds^2 = dx^2 + 2\cos\theta \, dx \, dy + dy^2$$
, $II = 2\sin\theta \, dx \, dy$, $\theta_{xy} = \sin\theta$, $0 < \theta < \pi$.

Proof. By the existence of the asymptotic Chebyshev net (Theorem 3.9) implies, there exists a domain $U_0 \subset \mathbb{R}^2$ and a map $\pi \colon U_0 \to M$ such that the coordinates (x, y) of \mathbb{R}^2 gives the asymptotic Chebyshev net of the surface, that is, (5.1) holds on U_0 . We let \mathcal{U} be the set of $U \subset \mathbb{R}^2$ containing U_0 satisfying (5.1), and take the maximal element U of the semi-ordered set \mathcal{U} with respect to the inclusion.

Assume $U \subsetneq \mathbb{R}^2$. Since $\partial U := \overline{U} \setminus U$ is not empty, we can take $P = (x_0, y_0) \in \partial U$. Let $\{(x_n, y_n)\}$ a sequence in U converging to (x_0, y_0) . Then both $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences of real numbers, and since

$$ds^{2} = dx^{2} + 2\cos\theta \, dx \, dy + dy^{2} \le 2(dx^{2} + dy^{2}),$$

 $\{(x_n,y_n)\}$ is a Cauchy sequence with respect to the metric ds^2 . Thus, setting $P_n := \pi(x_n,y_n)$, $\{P_n\}$ is a Cauchy sequence, and by completeness, it converges to $P \in M$. Using Theorem 3.9 again, there exists an asymptotic Chebyshev net (\hat{x},\hat{y}) on a neighborhood W of P. Since $\pi(U) \cap W \neq \emptyset$, the parameter (\hat{x},\hat{y}) is related to (x,y) as $(\hat{x},\hat{y}) = (\pm x + a, \pm y + b)$ or $(\pm y + a, \pm x + b)$, because of Exercise 3-2. Then by a coordinate change, we may assume (\hat{x},\hat{y}) coincides with (x,y) without loss of generality. Hence the asymptotic Chebyshev net (x,y) can be extended across P, which contradicts to the maximality of U.

Proof of Hilbert's theorem. Let θ be a smooth function on \mathbb{R}^2 satisfying

(5.2)
$$\theta_{xy} = \sin \theta, \qquad 0 < \theta < \pi.$$

In particular, $\sin \theta > 0$ holds on \mathbb{R}^2 .

Lemma 5.9. Let x_1, x_2, y_1, y_2 be real numbers with $x_1 < x_2$ and $y_1 < y_2$. Then

(5.3)
$$\theta(x_2, y_2) - \theta(x_1, y_2) = \theta(x_2, y_1) - \theta(x_1, y_1) + \int_{y_1}^{y_2} dy \int_{x_1}^{x_2} dx \sin \theta(x, y).$$

Proof. Letting $R := [x_1, x_2] \times [y_1, y_2]$, we have

$$\iint_{R} \sin \theta(x, y) \, dx \, dy = \iint_{R} \theta_{xy}(x, y) \, dx \, dy = \int_{y_{1}}^{y_{2}} \, dy \int_{x_{1}}^{x_{2}} (\theta_{y})_{x}(x, y) \, dx$$

$$= \int_{y_{1}}^{y_{2}} (\theta_{y}(x_{2}, y) - \theta_{y}(x_{1}, y)) \, dy = \theta(x_{2}, y_{2}) - \theta(x_{2}, y_{1}) - \theta(x_{1}, y_{2}) + \theta(x_{1}, y_{1}). \quad \Box$$

Lemma 5.10. There exists $y_1 \in \mathbb{R}$ such that the function $x \mapsto \theta(x, y_1)$ is non-constant.

Proof. If $x \mapsto \theta(x, y_0)$ is constant, (5.3) implies

$$\theta(x_1, y_1) - \theta(x_0, y_1) = \theta(x_1, y_0) - \theta(x_0, y_0) + \int_{y_0}^{y_1} \int_{x_0}^{x_1} \sin \theta \, dx \, dy = \int_{y_0}^{y_1} \int_{x_0}^{x_1} \sin \theta \, dx \, dy > 0,$$

where $y_1 > y_0$ and $x_1 > x_0$. Thus $x \mapsto \theta(x, y_1)$ is strictly increasing.

Let $y_1 \in \mathbb{R}$ as in Lemma 5.10. Then there exists an interval $I := [x_A, x_B]$ such that θ is strictly increasing or decreasing. Then, by a coordinate change $(x, y) \mapsto (-x, -y)$ and a translation on the xy-plane, we may assume without loss of generality that

(5.4)
$$x \mapsto \theta(x,0)$$
 is strictly increasing on $[0,x_1]$ $(x_1>0)$.

Lemma 5.11. Under the situation above, $x \mapsto \theta(x, y_1)$ is strictly increasing on $[0, x_1]$ if $y_1 \ge 0$.

Proof. Apply Lemma 5.9 for
$$[x, x'] \times [0, y_1]$$
 where $0 \le x < x' \le x_1$.

Take real numbers x_2 and x_3 satisfying $0 < x_3 < x_2 < x_1$, and let

$$\varepsilon := \theta(x_1, 0) - \theta(x_2, 0), \qquad \varepsilon' := \theta(x_3, 0) - \theta(0, 0) > 0,$$

Lemma 5.12. There exists $(x_0, y_0) \in (x_3, x_2) \times (0, \infty)$ such that

$$\theta(x_0, y_0) > \pi - \frac{\varepsilon}{2}.$$

Proof. Assume $\theta(x,y) \leq \pi - \varepsilon/2$ holds on $R := [x_3,x_2] \times [0,\infty)$. Then Lemmas 5.9 and 5.11 yield

$$\pi - \frac{\varepsilon}{2} \ge \theta(x, y) > \theta(x, y) - \theta(0, y) \ge \theta(x, 0) - \theta(0, 0) \ge \theta(x_3, 0) - \theta(0, 0) = \varepsilon'$$

on R. Hence $\sin \theta \ge \delta$ holds on R, where $\delta := \min \{ \sin(\pi - \varepsilon/2), \sin \varepsilon' \} > 0$. So, for $(x, y) \in R$,

$$\theta(x,y) > \theta(x,y) - \theta(x_3,y) = \theta(x,0) - \theta(x_3,0) + \int_0^y \int_{x_3}^x \sin\theta \, dx \, dy$$

$$\geq \theta(x,0) - \theta(x_3,0) + (x_3 - x)y\delta.$$

Letting $y \to +\infty$, the right-hand side diverges to $+\infty$. Then $\theta(x,y)$ exceeds π , a contradiction. \square

Proof of Theorem 5.7. Let $p: M \to \mathbb{R}^3$ be a complete pseudospherical surface. Then by Proposition 5.8, there exists a global asymptotic Chebyshev net. In particular, there exists a function $\theta \colon \mathbb{R}^2 \to \mathbb{R}$ satisfying (5.2).

Under the situation in this subsection, we have

$$\theta(x_1, y_0) - \theta(x_0, y_0) \ge \theta(x_1, y_0) - \theta(x_2, y_0) = \theta(x_1, 0) - \theta(x_2, 0) + \int_0^{y_0} dy \int_{x_2}^{x_1} \sin \theta \, dx \, dy$$

$$\ge \theta(x_1, 0) - \theta(x_2, 0) = \varepsilon.$$

Hence

$$\theta(x_1, y_0) \ge \theta(x_0, y_0) + \varepsilon \ge \pi + \frac{\varepsilon}{2},$$

contradicting the assumption $\theta \in (0, \pi)$.

Exercises

5-1 Consider a map

$$p: \mathbb{R}^2 \ni (u, v) \longmapsto (v \cosh u, v, v \sinh u) \in \mathbb{R}^3.$$

- (1) Verify that the image $p(\mathbb{R}^2)$ is contained in the cone $\{(x,y,z)\in\mathbb{R}^3: x^2-y^2-z^2=0\}$.
- (2) Is the induced metric $p^* \langle , \rangle$ complete on \mathbb{R}^2 ?
- 5-2 Prove that the shortest curve (with respect to the canonical Riemannian metric) joining O := (0,0) and P := (L,0) (L > 0) on the Euclidean plane is the line segment joining them. (Hint: For a curve $\gamma(t) = (x(t), y(t))$ ($0 \le t \le 1$) joining O and P, and apply the inequality similar to the proof of Proposition 5.6, and consider the equality conditions.)