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5 Hilbert’s theorem

Completeness of Riemannian manifolds

Riemannian manifolds. A Riemannian manifold is a manifold equipped with a Riemannian
metric ds2, that is, for each point p ∈ M , (ds2)P gives a (positive definite) inner product of the
tangent space TPM of M at P, and P 7→ (ds2)P satisfies an appropriate smoothness condition3.

Example 5.1. Let 〈 , 〉 be the canonical inner product of Rn. Identifying TPRn with Rn, 〈 , 〉
induces the inner product on the tangent space. Thus, Rn is regarded as a Riemannian manifold
with ds2 = 〈 , 〉, which is called the Euclidean space.

Let M be a 2-dimensional manifold and p : M → R3 a smooth map4. A map p is said to be an
immersion if the rank of the differential (dp)P is 2 for each P ∈M . If this is the case, setting

(ds2)P(XP, YP) := 〈dpP(XP), dpP(YP)〉 XP, YP ∈ TPM

we obtain the Riemannian metric ds2 on M , which is called the induced metric of 〈 , 〉 by p.
In a local coordinate system

(
U, (u, v)

)
on M , the map p is considered as an R3-valued function

in variables (u, v). Then p is an immersion if and only if the derivatives pu and pv are linearly
independent at each point on U , that is nothing but the condition for regular parametrization. By
using standard notation of manifold theory, pu and pv are expressed as

pu = dp

(
∂

∂u

)
, pv = dp

(
∂

∂v

)
.

Hence the induced metric ds2 is determined by its components

E := ds2
(
∂

∂u
,
∂

∂u

)
=

〈
dp

(
∂

∂u

)
, dp

(
∂

∂u

)〉
= 〈pu, pu〉 ,

F := ds2
(
∂

∂u
,
∂

∂v

)
= 〈pu, pv〉 , G := ds2

(
∂

∂v
,
∂

∂v

)
= 〈pv, pv〉 .

In this sense, we write the induced metric as

ds2 = E du2 + 2F du dv +Gdv2,

which is the first fundamental form of the surface p.

Completeness. Let γ : [a, b] →M be a C∞-curve and γ′(t) ∈ Tγ(t)M its velocity vector at γ(t).

Definition 5.2. The length of the curve γ (with respect to ds2) is defined by

Lds2(γ) :=

∫ b

a

|γ′(t)| dt, where |γ′(t)| =
√
ds2(γ′(t), γ′(t)).

For two points P, Q ∈ M , we denote CP,Q the set of smooth curves on M joining P and Q.
Then it is known (cf. [dC92, Prop. 2.5 in Chap. 7]) that if we define

dds2(P,Q) := inf {Lds2(γ) ; γ ∈ CP,Q} ,

the function dds2 : M × M → R satisfies the axiom of distance. Moreover, the topology of M
induced by the distance dds2 coincides with the original topology of M .

We call dds2 the distance with respect to the metric ds2.
11. July, 2025. Revised: 25. May, 2025

3“For any smooth vector fields X, Y on M , the funtion M 3 P 7→ (ds2)P(XP, YP) is smooth.”
4Although we restrict our arguments into 2-dimensional case, the contents here are valid for higher dimensions.
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Definition 5.3. A Riemannian manifold M with a Riemannian metric ds2 is said to be complete
if the distance function dds2 is complete, in other words, any Cauchy sequence with respect to dds2
converges in M .

Remark 5.4. Completeness is equivalent to each of the following conditions (Hopf-Rinow Theorem,
cf. [dC92, Chap. 7]): (1) Any geodesic is defined whole on R. (2) Any divergent path has infinity
length. (3) Any bounded closed subset is compact.

Example 5.5. The Euclidean space Rn is complete. In fact, induced distance is the usual distance
function. On the other hand, M := R2 \ {O} with the canonical metric of R2 is incomplete. In
fact, the Cauchy sequence {(1/n, 0, . . . , 0)} on M does not converge to any point in M .

The hyperbolic plane. The hyperbolic plane is the Riemannian manifold (H2, ds2), where
H2 = {(x, y) ; y > 0} is the upper-half plane and ds2 = (dx2 + dy2)/y2 (cf. Corollary 1.13), is
called the hyperbolic plane. As seen in Section 1, this is a model of the non-Euclidean geometry.

Proposition 5.6. The hyperbolic plane is complete.

Proof. First, we compute the distance of two points aligned on the vertical line: Let P := (x1, y1),
Q := (x2, y2) ∈ H2. For a curve γ(t) = (x(t), y(t)) (0 5 t 5 1) in CP,Q,

Lds2(γ) =

∫ 1

0

1

y(t)

√
ẋ(t)2 + ẏ(t)2 dt =

∫ 1

0

1

y(t)
|ẏ(t)| dt =

∣∣∣∣∫ 1

0

ẏ(t)

y(t)
dt

∣∣∣∣ = ∣∣log y(t)∣∣∣∣1
0
=

∣∣∣∣log y2y1
∣∣∣∣ .

Then
dds2(P,Q) =

∣∣∣∣log y2y1
∣∣∣∣ for P = (x1, y1), Q = (x2, y2).

Let {Pn = (xn, yn)} be a Cauchy sequence with respect to dds2 and fix a point O = (0, 1).
Since a Cauchy sequence is bounded, there exists a positive number m such that

m = dds2(O,Pn) = | log yn|

holds for all n, that is {log yn} is bounded. Hence there exists positive constants a and b such that
a < yn < b for all n. Here, on the domain U := {(x, y) ∈ H2 ; a < y < b},

1

b2
(dx2 + dy2) 5 ds2 5

1

a2
(dx2 + dy2).

Hence the sequence {Pn} on U is a Cauchy sequence with respect to the Euclidean metric, and
then it converges to a point on the closure U of U .

Hilbert’s theorem

The purpose of this section is to give the following theorem

Theorem 5.7 (D. Hilbert (1901) [Hil01]). There exists no complete pseudospherical surface.

Existence of a global asymptotic Chebyshev net. Let p : M → R3 be a complete immersion
of 2-dimensional manifold M to R3, and denote by ds2 the induced metric.

Proposition 5.8. There exists a smooth function θ : R2 → (0, π) and a smooth map π : R2 → M
such that p̃ := p ◦ π : R2 → R3 is an immersion with the first and second fundamental forms as

(5.1) ds2 = dx2 + 2 cos θ dx dy + dy2, II = 2 sin θ dx dy, θxy = sin θ, 0 < θ < π.
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Proof. By the existence of the asymptotic Chebyshev net (Theorem 3.9) implies, there exists a
domain U0 ⊂ R2 and a map π : U0 →M such that the coordinates (x, y) of R2 gives the asymptotic
Chebyshev net of the surface, that is, (5.1) holds on U0. We let U be the set of U ⊂ R2 containing
U0 satisfying (5.1), and take the maximal element U of the semi-ordered set U with respect to the
inclusion.

Assume U ( R2. Since ∂U := U \ U is not empty, we can take P = (x0, y0) ∈ ∂U . Let
{(xn, yn)} a sequence in U converging to (x0, y0). Then both {xn} and {yn} are Cauchy sequences
of real numbers, and since

ds2 = dx2 + 2 cos θ dx dy + dy2 5 2(dx2 + dy2),

{(xn, yn)} is a Cauchy sequence with respect to the metric ds2. Thus, setting Pn := π(xn, yn),
{Pn} is a Cauchy sequence, and by completeness, it converges to P ∈M . Using Theorem 3.9 again,
there exists an asymptotic Chebyshev net (x̂, ŷ) on a neighborhood W of P. Since π(U)∩W 6= ∅,
the parameter (x̂, ŷ) is related to (x, y) as (x̂, ŷ) = (±x + a,±y + b) or (±y + a,±x + b), because
of Exercise 3-2. Then by a coordinate change, we may assume (x̂, ŷ) coincides with (x, y) without
loss of generality. Hence the asymptotic Chebyshev net (x, y) can be extended across P, which
contradicts to the maximality of U .

Proof of Hilbert’s theorem. Let θ be a smooth function on R2 satisfying

(5.2) θxy = sin θ, 0 < θ < π.

In particular, sin θ > 0 holds on R2.

Lemma 5.9. Let x1, x2, y1, y2 be real numbers with x1 < x2 and y1 < y2. Then

(5.3) θ(x2, y2)− θ(x1, y2) = θ(x2, y1)− θ(x1, y1) +

∫ y2

y1

dy

∫ x2

x1

dx sin θ(x, y).

Proof. Letting R := [x1, x2]× [y1, y2], we have∫∫
R

sin θ(x, y) dx dy =

∫∫
R

θxy(x, y) dx dy =

∫ y2

y1

dy

∫ x2

x1

(θy)x(x, y) dx

=

∫ y2

y1

(θy(x2, y)− θy(x1, y)) dy = θ(x2, y2)− θ(x2, y1)− θ(x1, y2) + θ(x1, y1).

Lemma 5.10. There exists y1 ∈ R such that the function x 7→ θ(x, y1) is non-constant.

Proof. If x 7→ θ(x, y0) is constant, (5.3) implies

θ(x1, y1)− θ(x0, y1) = θ(x1, y0)− θ(x0, y0) +

∫ y1

y0

∫ x1

x0

sin θ dx dy =

∫ y1

y0

∫ x1

x0

sin θ dx dy > 0,

where y1 > y0 and x1 > x0. Thus x 7→ θ(x, y1) is strictly increasing.

Let y1 ∈ R as in Lemma 5.10. Then there exists an interval I := [xA, xB ] such that θ is strictly
increasing or decreasing. Then, by a coordinate change (x, y) 7→ (−x,−y) and a translation on the
xy-plane, we may assume without loss of generality that

(5.4) x 7→ θ(x, 0) is strictly increasing on [0, x1] (x1 > 0).

Lemma 5.11. Under the situation above, x 7→ θ(x, y1) is strictly increasing on [0, x1] if y1 = 0.

Proof. Apply Lemma 5.9 for [x, x′]× [0, y1] where 0 5 x < x′ 5 x1.
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Take real numbers x2 and x3 satisfying 0 < x3 < x2 < x1, and let

ε := θ(x1, 0)− θ(x2, 0), ε′ := θ(x3, 0)− θ(0, 0) > 0,

Lemma 5.12. There exists (x0, y0) ∈ (x3, x2)× (0,∞) such that

θ(x0, y0) > π − ε

2
.

Proof. Assume θ(x, y) 5 π− ε/2 holds on R := [x3, x2]× [0,∞). Then Lemmas 5.9 and 5.11 yield

π − ε

2
= θ(x, y) > θ(x, y)− θ(0, y) = θ(x, 0)− θ(0, 0) = θ(x3, 0)− θ(0, 0) = ε′

on R. Hence sin θ = δ holds on R, where δ := min{sin(π − ε/2), sin ε′} > 0. So, for (x, y) ∈ R,

θ(x, y) > θ(x, y)− θ(x3, y) = θ(x, 0)− θ(x3, 0) +

∫ y

0

∫ x

x3

sin θ dx dy

= θ(x, 0)− θ(x3, 0) + (x3 − x)yδ.

Letting y → +∞, the right-hand side diverges to +∞. Then θ(x, y) exceeds π, a contradiction.

Proof of Theorem 5.7. Let p : M → R3 be a complete pseudospherical surface. Then by Propo-
sition 5.8, there exists a global asymptotic Chebyshev net. In particular, there exists a function
θ : R2 → R satisfying (5.2).

Under the situation in this subsection, we have

θ(x1, y0)− θ(x0, y0) = θ(x1, y0)− θ(x2, y0) = θ(x1, 0)− θ(x2, 0) +

∫ y0

0

dy

∫ x1

x2

sin θ dx dy

= θ(x1, 0)− θ(x2, 0) = ε.

Hence
θ(x1, y0) = θ(x0, y0) + ε = π +

ε

2
,

contradicting the assumption θ ∈ (0, π).

Exercises

5-1 Consider a map
p : R2 3 (u, v) 7−→ (v coshu, v, v sinhu) ∈ R3.

(1) Verify that the image p(R2) is contained in the cone {(x, y, z) ∈ R3 ; x2 − y2 − z2 = 0}.
(2) Is the induced metric p∗ 〈 , 〉 complete on R2?

5-2 Prove that the shortest curve (with respect to the canonical Riemannian metric) joining
O := (0, 0) and P := (L, 0) (L > 0) on the Euclidean plane is the line segment joining them.
(Hint: For a curve γ(t) =

(
x(t), y(t)

)
(0 5 t 5 1) joining O and P, and apply the inequality

similar to the proof of Proposition 5.6, and consider the equality conditions.)


