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6 Lorentz-Minkowski space

The Lorentz inner product

The Lorentz inner product on the vector space R*! is a non-degenerate bilinear form

(61) Rn+1 X Rn+1 > (-’B,'y) — <ma y> ‘= —ZoYo + T1Y1 + -+ LnYn = mTvi

o Yo -1 0 ... 0
T Y1 0 1 ... 0
where x=| . |, y=| .|, and Y := .
Ty UYn 0o 0 ... 1

The Lorentz group is the group consists of the linear transformations of R"*! preserving the Lorentz
inner product (, ). We denote it by O(n,1):°

(6.2) O(n,1) ={A € M;,11(R),; (Az, Ay) = (z,y) forany z, y € RnJrl}
={AecM,1(R); ATYA =Y},

where M, 41 (R) is the set of (n + 1) x (n + 1)-real matrices with real components.
Lemma 6.1. Let A = (a;j)ij—o,..n € O(n+1,1). Then det A = %1 and |ag| = 1.
Proof. By (6.2), (det A)? = 1, that is, det A = £1. On the other hand, letting eo := (1,0,...,0)7,
(Aeg, Aeg) = —(aoo)2 + (a10)> + - - - + (ano)?, and (ep,e0) = —1
hold. Since these two values are equal by (6.2), we have the second assertion. O
Introducing the topology M,,1(R) by the identification with R*"+1) we know that 6

Fact 6.2. The set O(n,1) C M,,41(R) consits of for connected components,

SO4(n,1) :={A = (aij)ij=0,...n € Mpt1(R);det A > 0,aq0 > 0},
{A = (a,’j)i,jzo,_,,n S Mn+1(R) ;det A < 0,a99 > 0},
{A = (aij)i,j:07,,,,n € Mn—l—l(R) ;detA > 0,ap0 < O},
{A = (aij)i’j:()w"n S Mn+1(R) ;detA < 0,ap0 < 0}

Definition 6.3. A vector x in R"*! is said to be
o space-like if either (z,z) > 0 or x = 0,
o time-like if {(x,x) < 0, and
o light-like or null or isotropic if (x,x) =0 and & # 0.

The above properties of vectors are called causality.”

25. July, 2025. Revised: 01. August, 2025
5The symbol is written in various ways, for example O(n, 1) instead of O(n + 1,1).
SWe omit the proof.
"The words “time-like”, “space-like”, “light-like” and “causality” come from the special relativity, which is one
of the important applications of Lorentzian geometry. See Example 6.7.
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Example 6.4. Let {eo,...,e,} be the canonical basis of R"*1:
eo:=(1,0,...,00", e :=(0,1,....007, ..., e,:=(0,0,...,1)T,
which is orthonormal with respect to (, ):
| (€, e5) | = dij,

where §;; is the Kronecker’s delta symbol. The first vector e is time-like and others are space-like.
Moreover, the subspace Span{ey,...,e,}, which is the orthogonal complement of eq, consists of
space-like vectors.

Lemma 6.5. Let © € R"™! be a time-like vector. Then its orthogonal complement
at = {y eR"""; (y,2) = 0}
is an n-dimensional linear subspace of R™tY, consisting of space-like vectors.

Proof. Since & is the kernel of the linear map ¢ : R"*! 3 y + (x,y) € R, it is a liner subspace
of R™"*L. Moreover, ¢(x) < 0 implies that the image of ¢ is R. Hence dim Ker ¢ = n. Denote by
x = (20,71, ..,2,)T, which is time-like:

(x, ) = —(x0)* + Z(I’j)2 <0 that is, Zx? < (w0)%.
j=1 j=1

Since y = (Yo, Y1,---,yn)T € '+ satisfies (x,y) = —zoyo + 2?21 xjy; =0,

2

n n n
(x0y0)2= Zl“jyj < Zﬂﬂf Zy? <(950)2 ny
j=1 Jj=1 J=1

Hence (y,y) > 0, if y # 0. O

The Lorentz-Minkowski space

The (n+1)-dimensional Lorentz-Minkowski space L"*! is the (n+1)-manifold R"*! whose tangent
space TpR™*! = R"*! is endowed with Lorentzian metric (, ).

Fact 6.6. An isometry of L™ is in the form
L' s g — Az 4+ a e LM AecO(n+1,1), acR"

Example 6.7 (The special relativity). The special relativity is a geometry of the LorentzMinkowski
4-space L* as follows: Consider L* as a space-time, where (z,y,2) = (21,2, 23) is the position
vector of the space R? and t = z/c is the “time”, where c is the positive constant called the speed
of light in vacuum. In fact, for a light-like vector v, a curve v(s) := x + sv, called the light-like
line, represents a motion of a particle in the speed of light. A Lorentz transformation of this curve
also represents a motion in light speed, which is interpreted as the principle of invariance of the
speed of light. More precisely, if a transformation of the space-time preserves light-like lines, the
transformation is a Lorentz transformation.

Hyperbolic Space

Let
H" = {x = (z0,...,x,)" € R""; (z,2) = —1,29 > 0} c L"*!
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Lemma 6.8. H" is a connected n-dimensional submanifold of R*+1.

Proof. Let

F:R"™ >z =(20,...,20)" = (x,2) + 1R
G: R"! Bw:(xo,...,xn)ToneR.

Then by the implicit function theorem, X := F~1({0}) is an n-dimensional submanifold of R"*1.
Here, if z € X, 23 = 1+ 2% + - + 22 holds, that is, G|x = (—o0,—1] U [1,+00). Since G is
continuous, X is disconnected. Moreover, H" = F~1({0}) N G7([1,)) is connected, because it
can be expressed as a graph zg = /1 + 27 + - + 22. O

Lemma 6.9. For each x € H™,
(1) ToH" = 2t
(2) and the restriction of { , ) to T H™ is positive definite.

Proof. Let v(t) be a curve on H™ with v(0) = @. Differentiating (v(¢),v(¢t)) = —1 in ¢, we have
('(t),7(t)) = 0. In particular, v'(0) € TpH" is perpendicular to &. Hence T H"™ C 1. Then
Lemma 6.5 yields the both side are n-dimensional. Thus (1) is proven. In addition, the lemma
implies (2). O

Thus, by restricting (, ) to the tangent space of H™, we obtain a Riemannian manifold

(H",(, )
Definition 6.10. The manifold (H™, (, )) is called the hyperbolic space.

Fact 6.11. The isometry group of the hyperbolic space is
SO4(n,1) U{A = (a;;); det A= —1,a0 > 0}.
Fact 6.12. Let x € H" and v € Tpx H" with (v,v) = 1. Then
Ya,v(t) := (cosht)x + (sinht)v

is a geodesic on H™ with vz v (0) = ® and vy ,(0) = v. In particular, the hyperbolic space is
complete because the geodesics vy are defined whole on R.
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Ezxercises
6-1 Let
% 1 0 % coshu sinhwu 0 0
A 1 1 0 1 Bo— sinhu coshwu 0 0
’ 0 o 1 o}’ ’ 0 0 cosv —sinv |’
-3 -1 0 % 0 0 sinv Cosv

where v and v are real numbers.
(1) Verify that A and B are elements of SO (3,1).
(2) When A is conjugate to B? (Hint: Compute the eigenvalues.)

6-2 Let
S"i={xcR" x.x =1},

where “-” denotes the Euclidean inner product. Then S™ is an n-dimensional submanifold
embedded in R™*!, called the n-sphere. We denote the tangent space of S™ at & € S™ by
TrS™, and set

UgS™ :={v € TpS"; |v| = 1}.
(1) Show that TxS™ is expressed as
TpS" =zt ={veR"™; x-v =0}
(2) Show that the curve
Ye.v(t) := (cost)x + (sint)v (x e S™ velUyS)

in R"! is a curve on S™ with Vg 4 (t) =  and 7}, ,,(t) = v, where ' = d/dt.

(3) Let x and y be two distinct points of S™ with y # —x. Find v € Uz S™ and ty € (—7, )
such that vz »(to) = y. (Hint: orthogonalization)



