21 MTH.B406; Sect. 6

6 Lorentz-Minkowski space

The Lorentz inner product

The Lorentz inner product on the vector space \mathbb{R}^{n+1} is a non-degenerate bilinear form

(6.1)
$$\mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \ni (\boldsymbol{x}, \boldsymbol{y}) \mapsto \langle \boldsymbol{x}, \boldsymbol{y} \rangle := -x_0 y_0 + x_1 y_1 + \dots + x_n y_n = \boldsymbol{x}^T Y \boldsymbol{y},$$

where $\boldsymbol{x} = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad \boldsymbol{y} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \text{and} \quad Y := \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$

The *Lorentz group* is the group consists of the linear transformations of \mathbb{R}^{n+1} preserving the Lorentz inner product \langle , \rangle . We denote it by O(n,1):⁵

(6.2)
$$O(n,1) = \{ A \in \mathcal{M}_{n+1}(\mathbb{R}), ; \langle A\boldsymbol{x}, A\boldsymbol{y} \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle \text{ for any } \boldsymbol{x}, \, \boldsymbol{y} \in \mathbb{R}^{n+1} \}$$
$$= \{ A \in \mathcal{M}_{n+1}(\mathbb{R}); \, A^T Y A = Y \},$$

where $M_{n+1}(\mathbb{R})$ is the set of $(n+1) \times (n+1)$ -real matrices with real components.

Lemma 6.1. Let
$$A = (a_{ij})_{i,j=0,...,n} \in O(n+1,1)$$
. Then $\det A = \pm 1$ and $|a_{00}| \ge 1$.

Proof. By (6.2), $(\det A)^2 = 1$, that is, $\det A = \pm 1$. On the other hand, letting $e_0 := (1, 0, \dots, 0)^T$,

$$\langle Ae_0, Ae_0 \rangle = -(a_{00})^2 + (a_{10})^2 + \dots + (a_{n0})^2,$$
 and $\langle e_0, e_0 \rangle = -1$

hold. Since these two values are equal by (6.2), we have the second assertion.

Introducing the topology $M_{n+1}(\mathbb{R})$ by the identification with $\mathbb{R}^{2(n+1)}$, we know that ⁶

Fact 6.2. The set $O(n,1) \subset M_{n+1}(\mathbb{R})$ consits of for connected components,

$$\begin{split} \mathrm{SO}_{+}(n,1) := & \{ A = (a_{ij})_{i,j=0,...,n} \in \mathrm{M}_{n+1}(\mathbb{R}) \, ; \det A > 0, a_{00} > 0 \}, \\ & \{ A = (a_{ij})_{i,j=0,...,n} \in \mathrm{M}_{n+1}(\mathbb{R}) \, ; \det A < 0, a_{00} > 0 \}, \\ & \{ A = (a_{ij})_{i,j=0,...,n} \in \mathrm{M}_{n+1}(\mathbb{R}) \, ; \det A > 0, a_{00} < 0 \}, \\ & \{ A = (a_{ij})_{i,j=0,...,n} \in \mathrm{M}_{n+1}(\mathbb{R}) \, ; \det A < 0, a_{00} < 0 \}. \end{split}$$

Definition 6.3. A vector \boldsymbol{x} in \mathbb{R}^{n+1} is said to be

- space-like if either $\langle \boldsymbol{x}, \boldsymbol{x} \rangle > 0$ or $\boldsymbol{x} = \boldsymbol{0}$,
- time-like if $\langle \boldsymbol{x}, \boldsymbol{x} \rangle < 0$, and
- light-like or null or isotropic if $\langle x, x \rangle = 0$ and $x \neq 0$.

The above properties of vectors are called *causality*.⁷

^{25.} July, 2025. Revised: 01. August, 2025

⁵The symbol is written in various ways, for example O(n,1) instead of O(n+1,1).

⁶We omit the proof.

⁷The words "time-like", "space-like", "light-like" and "causality" come from the special relativity, which is one of the important applications of Lorentzian geometry. See Example 6.7.

MTH.B406; Sect. 6 22

Example 6.4. Let $\{e_0, \ldots, e_n\}$ be the canonical basis of \mathbb{R}^{n+1} :

$$e_0 := (1, 0, \dots, 0)^T, \quad e_1 := (0, 1, \dots, 0)^T, \quad \dots, \quad e_n := (0, 0, \dots, 1)^T,$$

which is *orthonormal* with respect to \langle , \rangle :

$$|\langle \boldsymbol{e}_i, \boldsymbol{e}_i \rangle| = \delta_{ij},$$

where δ_{ij} is the Kronecker's delta symbol. The first vector \mathbf{e}_0 is time-like and others are space-like. Moreover, the subspace $\mathrm{Span}\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$, which is the orthogonal complement of \mathbf{e}_0 , consists of space-like vectors.

Lemma 6.5. Let $x \in \mathbb{R}^{n+1}$ be a time-like vector. Then its orthogonal complement

$$\boldsymbol{x}^{\perp} := \{ \boldsymbol{y} \in \mathbb{R}^{n+1} \, ; \, \langle \boldsymbol{y}, \boldsymbol{x} \rangle = 0 \}$$

is an n-dimensional linear subspace of \mathbb{R}^{n+1} , consisting of space-like vectors.

Proof. Since \mathbf{x}^{\perp} is the kernel of the linear map $\varphi : \mathbb{R}^{n+1} \ni \mathbf{y} \mapsto \langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{R}$, it is a liner subspace of \mathbb{R}^{n+1} . Moreover, $\varphi(\mathbf{x}) < 0$ implies that the image of φ is \mathbb{R} . Hence dim Ker $\varphi = n$. Denote by $\mathbf{x} = (x_0, x_1, \dots, x_n)^T$, which is time-like:

$$\langle \boldsymbol{x}, \boldsymbol{x} \rangle = -(x_0)^2 + \sum_{j=1}^n (x_j)^2 < 0$$
 that is, $\sum_{j=1}^n x_j^2 < (x_0)^2$.

Since $\mathbf{y} = (y_0, y_1, \dots, y_n)^T \in \mathbf{x}^{\perp}$ satisfies $\langle \mathbf{x}, \mathbf{y} \rangle = -x_0 y_0 + \sum_{j=1}^n x_j y_j = 0$,

$$(x_0 y_0)^2 = \left(\sum_{j=1}^n x_j y_j\right)^2 \le \left(\sum_{j=1}^n x_j^2\right) \left(\sum_{j=1}^n y_j^2\right) < (x_0)^2 \left(\sum_{j=1}^n y_j^2\right).$$

Hence $\langle \boldsymbol{y}, \boldsymbol{y} \rangle > 0$, if $\boldsymbol{y} \neq \boldsymbol{0}$.

The Lorentz-Minkowski space

The (n+1)-dimensional Lorentz-Minkowski space \mathbb{L}^{n+1} is the (n+1)-manifold \mathbb{R}^{n+1} whose tangent space $T_{\mathbb{P}}\mathbb{R}^{n+1}=\mathbb{R}^{n+1}$ is endowed with Lorentzian metric $\langle \ , \ \rangle$.

Fact 6.6. An isometry of \mathbb{L}^{n+1} is in the form

$$\mathbb{L}^{n+1} \ni \boldsymbol{x} \longmapsto A\boldsymbol{x} + \boldsymbol{a} \in \mathbb{L}^{n+1}, \qquad A \in \mathcal{O}(n+1,1), \quad \boldsymbol{a} \in \mathbb{R}^{n+1}.$$

Example 6.7 (The special relativity). The *special relativity* is a geometry of the LorentzMinkowski 4-space \mathbb{L}^4 as follows: Consider \mathbb{L}^4 as a *space-time*, where $(x,y,z)=(x_1,x_2,x_3)$ is the position vector of the space \mathbb{R}^3 and $t=x_0/c$ is the "time", where c is the positive constant called the *speed of light in vacuum*. In fact, for a light-like vector \mathbf{v} , a curve $\gamma(s):=\mathbf{x}+s\mathbf{v}$, called the *light-like line*, represents a motion of a particle in the speed of light. A Lorentz transformation of this curve also represents a motion in light speed, which is interpreted as the *principle of invariance of the speed of light*. More precisely, if a transformation of the space-time preserves light-like lines, the transformation is a Lorentz transformation.

Hyperbolic Space

Let

$$H^n := \{ \boldsymbol{x} = (x_0, \dots, x_n)^T \in \mathbb{R}^{n+1} ; \langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1, x_0 > 0 \} \subset \mathbb{L}^{n+1}$$

23 MTH.B406; Sect. 6

Lemma 6.8. H^n is a connected n-dimensional submanifold of \mathbb{R}^{n+1} .

Proof. Let

$$F: \mathbb{R}^{n+1} \ni \boldsymbol{x} = (x_0, \dots, x_n)^T \mapsto \langle \boldsymbol{x}, \boldsymbol{x} \rangle + 1 \in \mathbb{R}$$
$$G: \mathbb{R}^{n+1} \ni \boldsymbol{x} = (x_0, \dots, x_n)^T \mapsto x_0 \in \mathbb{R}.$$

Then by the implicit function theorem, $X:=F^{-1}(\{0\})$ is an n-dimensional submanifold of \mathbb{R}^{n+1} . Here, if $\boldsymbol{x}\in X$, $x_0^2=1+x_1^2+\cdots+x_n^2$ holds, that is, $G|_X=(-\infty,-1]\cup[1,+\infty)$. Since G is continuous, X is disconnected. Moreover, $H^n=F^{-1}(\{0\})\cap G^{-1}([1,\infty))$ is connected, because it can be expressed as a graph $x_0=\sqrt{1+x_1^2+\cdots+x_n^2}$.

Lemma 6.9. For each $x \in H^n$,

- $(1) T_{\boldsymbol{x}}H^n = \boldsymbol{x}^{\perp},$
- (2) and the restriction of \langle , \rangle to T_xH^n is positive definite.

Proof. Let $\gamma(t)$ be a curve on H^n with $\gamma(0) = \boldsymbol{x}$. Differentiating $\langle \gamma(t), \gamma(t) \rangle = -1$ in t, we have $\langle \gamma'(t), \gamma(t) \rangle = 0$. In particular, $\gamma'(0) \in T_{\boldsymbol{x}}H^n$ is perpendicular to \boldsymbol{x} . Hence $T_{\boldsymbol{x}}H^n \subset \boldsymbol{x}^{\perp}$. Then Lemma 6.5 yields the both side are n-dimensional. Thus (1) is proven. In addition, the lemma implies (2).

Thus, by restricting \langle , \rangle to the tangent space of H^n , we obtain a Riemannian manifold (H^n, \langle , \rangle) .

Definition 6.10. The manifold (H^n, \langle , \rangle) is called the *hyperbolic space*.

Fact 6.11. The isometry group of the hyperbolic space is

$$SO_{+}(n,1) \cup \{A = (a_{ij}); \det A = -1, a_{00} > 0\}.$$

Fact 6.12. Let $x \in H^n$ and $v \in T_xH^n$ with $\langle v, v \rangle = 1$. Then

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := (\cosh t)\boldsymbol{x} + (\sinh t)\boldsymbol{v}$$

is a geodesic on H^n with $\gamma_{\boldsymbol{x},\boldsymbol{v}}(0) = \boldsymbol{x}$ and $\gamma'_{\boldsymbol{x},\boldsymbol{v}}(0) = \boldsymbol{v}$. In particular, the hyperbolic space is complete because the geodesics $\gamma_{\boldsymbol{x},\boldsymbol{v}}$ are defined whole on \mathbb{R} .

MTH.B406; Sect. 6

Exercises

6-1 Let

$$A := \begin{pmatrix} \frac{3}{2} & 1 & 0 & \frac{1}{2} \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ -\frac{1}{2} & -1 & 0 & \frac{1}{2} \end{pmatrix}, \qquad B := \begin{pmatrix} \cosh u & \sinh u & 0 & 0 \\ \sinh u & \cosh u & 0 & 0 \\ 0 & 0 & \cos v & -\sin v \\ 0 & 0 & \sin v & \cos v \end{pmatrix},$$

24

where u and v are real numbers.

- (1) Verify that A and B are elements of $SO_{+}(3,1)$.
- (2) When A is conjugate to B? (Hint: Compute the eigenvalues.)

6-2 Let

$$S^n := \{ \boldsymbol{x} \in \mathbb{R}^{n+1} \, ; \, \boldsymbol{x} \cdot \boldsymbol{x} = 1 \},$$

where "·" denotes the Euclidean inner product. Then S^n is an n-dimensional submanifold embedded in \mathbb{R}^{n+1} , called the n-sphere. We denote the tangent space of S^n at $x \in S^n$ by $T_x S^n$, and set

$$U_x S^n := \{ v \in T_x S^n ; |v| = 1 \}.$$

(1) Show that T_xS^n is expressed as

$$T_{\boldsymbol{x}}S^n = \boldsymbol{x}^{\perp} = \{ \boldsymbol{v} \in \mathbb{R}^{n+1} ; \, \boldsymbol{x} \cdot \boldsymbol{v} = 0 \}.$$

(2) Show that the curve

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := (\cos t)\boldsymbol{x} + (\sin t)\boldsymbol{v} \qquad (\boldsymbol{x} \in S^n, \boldsymbol{v} \in U_{\boldsymbol{x}}S^n)$$

in \mathbb{R}^{n+1} is a curve on S^n with $\gamma_{\boldsymbol{x},\boldsymbol{v}}(t)=\boldsymbol{x}$ and $\gamma'_{\boldsymbol{x},\boldsymbol{v}}(t)=\boldsymbol{v}$, where '=d/dt.

(3) Let \boldsymbol{x} and \boldsymbol{y} be two distinct points of S^n with $\boldsymbol{y} \neq -\boldsymbol{x}$. Find $\boldsymbol{v} \in U_{\boldsymbol{x}}S^n$ and $t_0 \in (-\pi, \pi)$ such that $\gamma_{\boldsymbol{x},\boldsymbol{v}}(t_0) = \boldsymbol{y}$. (Hint: orthogonalization)