25 MTH.B406; Sect. 7

7 Models of non-Euclidean geometry

In this section, we treat the 2-dimensional hyperbolic space H^2 for the sake of simplicity:

$$H^2 := \{ \boldsymbol{x} = (x_0, x_1, x_2)^T \in \mathbb{L}^3 ; \langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1, x_0 > 0 \}.$$

Almost all discussions here work for general dimensional case. Throughout this section, we denote the canonical basis of $\mathbb{L}^3 (= \mathbb{R}^3)$ by

$$e_0 := (1,0,0)^T$$
, $e_1 := (0,1,0)^T$, $e_2 := (0,0,1)^T$.

Isometries

Recall that

$$O(2,1) := \{ A \in M_3(\mathbb{R}) ; A^T Y A = Y \}, \quad \text{where} \quad Y = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

is the set of linear isometry of \mathbb{L}^3 (= \mathbb{R}^3) preserving the Lorentz inner product. The connected component of O(2,1) containing the identity matrix is

$$SO_{+}(3,1) := \{ A = (a_{ij})_{i,j=0,1,2} \in O(2,1) ; \det A = 1, a_{00} > 0 \}.$$

Lemma 7.1. Let $A \in SO_+(2,1)$. Then $A^{-1} = YA^TY$. In particular, $A^T \in SO_+(2,1)$.

Proof. Let
$$A=(a_{ij})\in SO_+(2,1)$$
. Since $Y^2=\mathrm{id},\ YA^TYA=\mathrm{id}.$ Hence $A^{-1}=YA^TY,$ and then $AYA^TY=AA^{-1}=\mathrm{id}.$

Lemma 7.2. The liner action of $SO_{+}(3,1)$ on \mathbb{L}^{3} preserves H^{2} .

Proof. Let $A = (a_{ij}) \in SO_+(2,1)$ and $\mathbf{x} = (x_0, x_1, x_2)^T \in H^2$. Since it preserves the inner product, $\langle A\mathbf{x}, A\mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle = -1$ for all $\mathbf{x} \in H^2$. Then it is sufficient to show the first component of $A\mathbf{x}$ is positive. Here, $AYA^T = Y$ holds by Lemma 7.1. By the top-left component of this identity and the definition of H^2 , we have

$$-(a_{00})^2 + (a_{01})^2 + (a_{02})^2 = -1$$
, $-(x_0)^2 + (x_1)^2 + (x_2)^2 = -1$, $a_{00} > 0$, and $x_0 > 0$.

So, the first component of Ax is computed as

$$a_{00}x_0 + a_{01}x_1 + a_{02}x_2 = \sqrt{(a_{01})^2 + (a_{02})^2 + 1}\sqrt{(x_1)^2 + (x_{22})^2 + 1} + a_{01}x_1 + a_{02}x_2$$
$$> \sqrt{(a_{01})^2 + (a_{02})^2}\sqrt{(x_1)^2 + (x_{22})^2} + a_{01}x_1 + a_{02}x_2 \ge 0.$$

Here, the final inequality comes from the Cauchy-Schwarz inequality. This completes the proof. \Box

Lemma 7.3. The action of $SO_{+}(2,1)$ on \mathbb{L}^{3} is isometric.

Proof. Let $f: H^2 \ni \boldsymbol{x} \mapsto A\boldsymbol{x} \in H^2$, where $A \in SO_+(2,1)$. Take $\boldsymbol{x} \in H^2$ and $\boldsymbol{v} \in T_{\boldsymbol{x}}H^2 = \boldsymbol{x}^{\perp}$. Then there exists a curve $\gamma(t)$ on H^2 such that $\gamma(0) = \boldsymbol{x}$ and $\gamma'(0) = \boldsymbol{v}$, where ' = d/dt. Then $df(\boldsymbol{v}) = (f \circ \gamma)'(0) = (A\gamma(t))'|_{t=0} = A\gamma'(0) = A\boldsymbol{v}$. In other words, the differential $df_{\boldsymbol{x}}: T_{\boldsymbol{x}}H^2 \to T_{\boldsymbol{x}}H^2$ is the liner action of the matrix A on $T_{\boldsymbol{x}}H^2 \subset \mathbb{L}^3$. Since A preserves the Lorentz inner product, f is an isometry.

Lemma 7.4. The group $SO_{+}(2,1)$ acts transitively on the unit tangent bundle UH^{2} of H^{2} , where

$$UH^2 := \bigcup_{\boldsymbol{x} \in H^2} U_{\boldsymbol{x}}H^2, \qquad U_{\boldsymbol{x}}H^2 := \{ \boldsymbol{v} \in T_{\boldsymbol{x}}H^2 \, ; \, \langle \boldsymbol{v}, \boldsymbol{v} \rangle = 1 \}.$$

MTH.B406; Sect. 7 26

Proof. The isometry f as in the proof of Lemma 7.3 induces the map $f_*: TH^2 \to TH^2$ as

$$f_*: TH^2 \ni v \longmapsto df(v) = Av \in TH^2, \quad v \in T_xH^2, \quad df(v) \in T_{f(x)}H^2 = T_{Ax}H^2.$$

Since the linear action of A preserves the Lorentz inner product, f_* induces the map $UH^2 \to UH^2$. Take $\mathbf{x} \in H^2$ and $\mathbf{v} \in U_{\mathbf{x}}H^2$ and Let $\mathbf{a}_0 = \mathbf{x}$, $\mathbf{a}_1 = \mathbf{v}$ and $\mathbf{a}_2 = Y(\mathbf{x} \times \mathbf{v})$, where "×" denotes the vector product of the vectors of *Euclidean* space \mathbb{R}^3 . Then $\langle \mathbf{a}_i, \mathbf{a}_j \rangle = 0$ if $i \neq j$, $\langle \mathbf{a}_0, \mathbf{a}_0 \rangle = -1$, and $\langle \mathbf{a}_j, \mathbf{a}_j \rangle = 1$ (j = 1, 2). So we have $A := (\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2) \in \mathrm{O}(2, 1)$. Moreover, the top-left component of A is the first component of \mathbf{x} , which is positive, and det $A = \mathbf{a}_2 \cdot (\mathbf{a}_0 \times \mathbf{a}_1) = \mathbf{a}_2 \cdot Y \mathbf{a}_2 = \langle \mathbf{a}_2, \mathbf{a}_2 \rangle = 1$, where "·" is the Euclidean inner product. Thus, we have $A \in \mathrm{SO}_+(2, 1)$.

By definition, the liner transformation by the matrix A maps e_0 to $a_0 = x$, and e_1 to $a_1 = v$. Since the pair (x, v) is taken arbitrarily, the conclusion follows

Hyperbolic plane and the upper-half plane

We have used the symbol H in Section 1 for the upper-half space as a model of non-Euclidean geometry. To avoid confusing in this section, we denote the upper-half plane and its metric as

(7.1)
$$\mathbb{R}^2_+ := \{(x,y) \in \mathbb{R}^2 ; y > 0\}, \qquad ds^2 = \frac{dx^2 + dy^2}{y^2}.$$

In this subsection, we shall explain the relationship between $H^2 \subset \mathbb{L}^3$ and \mathbb{R}^2_+ .

Lemma 7.5. If $\mathbf{x} = (x_0, x_1, x_2)^T \in H^3$. Then $x_0 + x_1 > 0$ holds.

Proof. Since $(x_0)^2 - (x_1)^2 = 1 + (x_2)^2$, we have $(x_0 + x_1)(x_0 - x_1) > 0$. So $x_0 + x_1$ does not change sign on H^2 because H^2 is connected, and it is positive at $\mathbf{x} = (1, 0, 0)^T \in H^2$.

Let

(7.2)
$$\pi \colon H^2 \ni (x_0, x_1, x_2) \longmapsto \left(\frac{x_2}{x_0 + x_1}, \frac{1}{x_0 + x_1}\right) \in \mathbb{R}^2_+.$$

Lemma 7.6. The map π is diffeomorphism, and its inverse is expressed as

(7.3)
$$\pi^{-1} \colon \mathbb{R}_{+} \ni (x,y) \longmapsto \left(\frac{1+x^2+y^2}{2y}, \frac{1-x^2-y^2}{2y}, \frac{x}{y}\right).$$

Proof. Set $(x,y) = (x_2,1)/(x_0+x_1)$ for $(x_0,x_1,x_2)^T \in \mathbb{L}^2$ and $(x,y) \in \mathbb{R}^2_+$. Then

$$x_0 + x_1 = \frac{1}{y}, \quad x_2 = \frac{x}{y}, \quad (x_0 - x_1)(x_0 + x_1) - x_2^2 = 1.$$

Hence we have the expression (7.3), and then π is a bijection.

Proposition 7.7. The diffeomorphism $\pi: H^2 \to \mathbb{R}^2_+$ is an isometry with respect to the metric on H^2 induced from the Lorentzian inner product, and the metric ds^2 on \mathbb{R}^2_+ in (7.1).

Proof. Differentiating $(x_0, x_1, x_2) = \pi^{-1}(x, y)$, we have

$$dx_0 = \left(\frac{1+x^2+y^2}{2y}\right) dx + \left(\frac{-1-x^2+y^2}{2y}\right) dy,$$

$$dx_1 = \left(\frac{1-x^2-y^2}{2y}\right) dx + \left(\frac{1-x^2-y^2}{2y}\right) dy,$$

$$dx_2 = \frac{1}{y} dx - \frac{x}{y^2} dy.$$

27 MTH.B406; Sect. 7

Then the metric on H^2 is expressed as

$$-dx_0^2 + dx_1^2 + dx_2^2 = \frac{dx^2 + dy^2}{y^2} = ds^2.$$

This completes the proof.

Lemma 7.8. Let

$$\sigma(t) = \sigma_{c,r}(t) := \begin{cases} (r \tanh t + c, r \operatorname{sech} t) & (0 < r < \infty), \\ (c, e^t) & (r = +\infty), \end{cases}$$

where $c \in \mathbb{R}$. Then

$$\pi^{-1} \circ \sigma(t) = (\cosh t)\boldsymbol{x} + (\sinh t)\boldsymbol{v}$$

for some $x \in H^2$ and $v \in U_xH^2$.

Proof. By direct computation, the conclusion follows by setting

$$\mathbf{x} = \left(\frac{1+c^2+r^2}{2r}, \frac{-1+c^2+r^2}{2r}, \frac{c}{r}\right)^T, \quad \mathbf{v} = (c, -c, 1)^T$$

when $0 < r < +\infty$. When $r = +\infty$, it is sufficient to set $\boldsymbol{x} = (1 + c^2/2, -c^2/2, c)^T$ and $\boldsymbol{v} = (-c^2/2, -1 + c^2/2, -c)^T$.

Shortest path

Let $x \in H^2$ and $v \in U_x H^2$, and set

(7.4)
$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := (\cosh t)\boldsymbol{x} + (\sinh t)\boldsymbol{v}.$$

Since $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1$, $\langle \boldsymbol{x}, \boldsymbol{v} \rangle = 0$, and $\langle \boldsymbol{v}, \boldsymbol{v} \rangle = 1$, we have

Lemma 7.9. The curve $\gamma := \gamma_{\boldsymbol{x},\boldsymbol{v}}$ in (7.4) is a curve on H^2 with $\gamma(0) = \boldsymbol{x}$ and $\gamma'(0) = \boldsymbol{v}$. Moreover, t is the arc-length parameter, that is, $\langle \gamma'(t), \gamma'(t) \rangle = 1$.

Proposition 7.10. Let x and y be two distinct points in H^2 . Then the shortest path joining x and y is parametrized as $\gamma_{x,v}(t)$, where

(7.5)
$$v := \frac{y + \langle x, y \rangle x}{|y + \langle x, y \rangle x|},$$

which is the arc in $\Pi_{x,y} \cap H^2$, where $\Pi_{x,y}$ is the plane spanned by x and y.

Proof. First, the "straight line" on the upper-half plane (\mathbb{R}^2_+, ds^2) is the shortest path. Let P and Q be two distinct points on \mathbb{R}^2_+ . By a congruence as in Section 1, we may assume that P = (0,1) and Q = (0,q) where q > 0. Then by the same argument as in Problem 5-2 in Section 5, the shortest path is the line segment on the y-axis. Since the corresponding path on H^2 is in the form $\gamma_{x,v}$ by Lemma 7.8. Then by the same argument as Problem 6-2 in Section 6, we have the conclusion.

Corollary 7.11. Let x and y be two distinct points on H^2 . Then the distance dist(x, y) of x and y is

$$\operatorname{dist}(\boldsymbol{x}, \boldsymbol{y}) = \cosh^{-1}(-\langle \boldsymbol{x}, \boldsymbol{y} \rangle).$$

MTH.B406; Sect. 7 28

Proof. First, if we set $\mathbf{x} = (x_0, x_1, x_2)^T$ and $\mathbf{y} = (y_0, y_1, y_2)^T$,

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = -x_0 y_0 + x_1 y_1 + x_2 y_2 = -\sqrt{1 + x_1^2 + x_2^2} \sqrt{1 + y_1^2 + y_2^2} + x_1 y_1 + x_2 y_2$$

$$\leq -\sqrt{1 + x_1^2 + x_2^2} \sqrt{1 + y_1^2 + y_2^2} + \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2} \leq -1.$$

Then $\cosh^{-1}(-\langle \boldsymbol{x}, \boldsymbol{y} \rangle)$ is a real number. Since shortest path joining \boldsymbol{x} and \boldsymbol{y} is $\gamma_{\boldsymbol{x},\boldsymbol{v}}(t)$, where $\gamma_{\boldsymbol{x},\boldsymbol{v}}(t_0) = \boldsymbol{y}$ for some $t_0 \in \mathbb{R}$:

$$\mathbf{y} = (\cosh t_0)\mathbf{x} + (\sinh t_0)\mathbf{v}.$$

Taking inner product with y, we have $-1 = \cosh(t_0)\boldsymbol{x}$. Here, since t is the arc-length parameter, $t_0 = \operatorname{dist}(\boldsymbol{x}, \boldsymbol{y})$. Thus we have the conclusion.

Example 7.12 (The hyperbolic Pythagorean theorem). Let x, y, z be three non-co-linear points in H^2 , and ξ , η , γ the straight lines joining y and z, x and z, and x and y, respectively. If the angle between η and ζ at x is right-angle, then

$$\cosh X = \cosh Y \cosh Z, \qquad X = \operatorname{dist}(y, z), \quad Y = \operatorname{dist}(x, z), \quad Z = \operatorname{dist}(x, y)$$

holds.

In fact, represent the arcs η and ζ by $\gamma_{\boldsymbol{x},\boldsymbol{v}}$ and $\gamma_{\boldsymbol{x},\boldsymbol{w}}$, where

$$oldsymbol{v} := rac{oldsymbol{z} + \langle oldsymbol{x}, oldsymbol{z}
angle}{|oldsymbol{z} + \langle oldsymbol{x}, oldsymbol{z}
angle}, \quad oldsymbol{w} := rac{oldsymbol{y} + \langle oldsymbol{x}, oldsymbol{y}
angle}{|oldsymbol{y} + \langle oldsymbol{x}, oldsymbol{y}
angle}.$$

By assumption, v and w are perpendicular, namely,

$$\langle \boldsymbol{z} + \langle \boldsymbol{x}, \boldsymbol{z} \rangle \, \boldsymbol{x}, \boldsymbol{y} + \langle \boldsymbol{x}, \boldsymbol{y} \rangle \, \boldsymbol{x} \rangle = 0.$$

Hence $-\langle y, z \rangle = \langle x, y \rangle \langle x, z \rangle$, and we have the conclusion by Corollary 7.11.

Various models of the hyperbolic plane

Poincaré disc model: Let

(7.6)
$$\pi_P \colon H^2 \ni (x_0, x_1, x_2)^T \mapsto \frac{1 + x_0}{\langle} x_1, x_2 \rangle \ni D := \{(u, v) \in \mathbb{R}^2 \; ; \; u^2 + v^2 < 1\},$$

which is called the stereographic projection. The inverse of π_P is written as

$$\pi_P^{-1}(u,v) = \left(\frac{1+u^2+v^2}{1-u^2-v^2}, \frac{2u}{1-u^2-v^2}, \frac{2v}{1-u^2-v^2}\right).$$

The metric on D induced from H^2 is computed as

$$ds_P^2 := \frac{4}{(1 - u^2 - v^2)^2} (du^2 + dv^2).$$

The model (D, ds_P^2) is called the *Poincaré disc model* of the hyperbolic plane.

Klein model: Let

(7.7)
$$\pi_C \colon H^2 \ni (x_0, x_1, x_2)^T \mapsto \left(\frac{x_1}{x_0}, \frac{x_2}{x_0}\right) \ni D := \{(\xi, \eta) \in \mathbb{R}^2 \; ; \; \xi^2 + \eta^2 < 1\},$$

which is called the *central projection*. The inverse and the induced metric ds_C^2 is represented as

$$\pi_C^{-1}(\xi,\eta) = \frac{1}{\sqrt{1-\xi^2-\eta^2}}(1,\xi,\eta)^T, \qquad ds_C^2 = \frac{1}{(1-\xi^2-\eta^2)} \left((1-\eta^2) \, d\xi^2 + 2\xi \eta \, d\xi \, d\eta + (1-\xi^2) \, d\eta^2 \right).$$

The model (D, ds_C^2) is called the *Klein model* or the *projective model*, in which a "straight line" is a line segment of $D \subset \mathbb{R}^2$.