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7 Models of non-Euclidean geometry

In this section, we treat the 2-dimensional hyperbolic space H2 for the sake of simplicity:

H2 := {x = (x0, x1, x2)
T ∈ L3 ; 〈x,x〉 = −1, x0 > 0}.

Almost all discussions here work for general dimensional case. Throughout this section, we denote
the canonical basis of L3(= R3) by

e0 := (1, 0, 0)T , e1 := (0, 1, 0)T , e2 := (0, 0, 1)T .

Isometries

Recall that

O(2, 1) := {A ∈ M3(R) ; ATY A = Y }, where Y =

−1 0 0
0 1 0
0 0 1


is the set of linear isometry of L3(= R3) preserving the Lorentz inner product. The connected
component of O(2, 1) containing the identity matrix is

SO+(3, 1) := {A = (aij)i,j=0,1,2 ∈ O(2, 1) ; detA = 1, a00 > 0}.

Lemma 7.1. Let A ∈ SO+(2, 1). Then A−1 = Y ATY . In particular, AT ∈ SO+(2, 1).

Proof. Let A = (aij) ∈ SO+(2, 1). Since Y 2 = id, Y ATY A = id. Hence A−1 = Y ATY , and then
AY ATY = AA−1 = id.

Lemma 7.2. The liner action of SO+(3, 1) on L3 preserves H2.

Proof. Let A = (aij) ∈ SO+(2, 1) and x = (x0, x1, x2)
T ∈ H2. Since it preserves the inner product,

〈Ax, Ax〉 = 〈x,x〉 = −1 for all x ∈ H2. Then it is sufficient to show the first component of Ax is
positive. Here , AY AT = Y holds by Lemma 7.1. By the top-left component of this identity and
the definition of H2, we have

−(a00)
2 + (a01)

2 + (a02)
2 = −1, −(x0)

2 + (x1)
2 + (x2)

2 = −1, a00 > 0, and x0 > 0.

So, the first component of Ax is computed as

a00x0 + a01x1 + a02x2 =
√
(a01)2 + (a02)2 + 1

√
(x1)2 + (x22)2 + 1 + a01x1 + a02x2

>
√
(a01)2 + (a02)2

√
(x1)2 + (x22)2 + a01x1 + a02x2 = 0.

Here, the final inequality comes from the Cauchy-Schwarz inequality. This completes the proof.

Lemma 7.3. The action of SO+(2, 1) on L3 is isometric.

Proof. Let f : H2 3 x 7→ Ax ∈ H2, where A ∈ SO+(2, 1). Take x ∈ H2 and v ∈ TxH
2 = x⊥.

Then there exists a curve γ(t) on H2 such that γ(0) = x and γ′(0) = v, where ′ = d/dt. Then
df(v) = (f ◦ γ)′(0) = (Aγ(t))′|t=0 = Aγ′(0) = Av. In other words, the differential dfx : TxH2 →
TxH

2 is the liner action of the matrix A on TxH
2 ⊂ L3. Since A preserves the Lorentz inner

product, f is an isometry.

Lemma 7.4. The group SO+(2, 1) acts transitively on the unit tangent bundle UH2 of H2, where

UH2 :=
⋃

x∈H2

UxH
2, UxH

2 := {v ∈ TxH
2 ; 〈v,v〉 = 1}.
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Proof. The isometry f as in the proof of Lemma 7.3 induces the map f∗ : TH
2 → TH2 as

f∗ : TH
2 3 v 7−→ df(v) = Av ∈ TH2, v ∈ TxH

2, df(v) ∈ Tf(x)H
2 = TAxH

2.

Since the linear action of A preserves the Lorentz inner product, f∗ induces the map UH2 → UH2.
Take x ∈ H2 and v ∈ UxH

2 and Let a0 = x, a1 = v and a2 = Y (x×v), where “×” denotes the
vector product of the vectors of Euclidean space R3. Then 〈ai,aj〉 = 0 if i 6= j, 〈a0,a0〉 = −1, and
〈aj ,aj〉 = 1 (j = 1, 2). So we have A := (a0,a1,a2) ∈ O(2, 1). Moreover, the top-left component of
A is the first component of x, which is positive, and detA = a2 ·(a0×a1) = a2 ·Y a2 = 〈a2,a2〉 = 1,
where “·” is the Euclidean inner product. Thus, we have A ∈ SO+(2, 1).

By definition, the liner transformation by the matrix A maps e0 to a0 = x, and e1 to a1 = v.
Since the pair (x,v) is taken arbitrarily, the conclusion follows

Hyperbolic plane and the upper-half plane

We have used the symbol H in Section 1 for the upper-half space as a model of non-Euclidean
geometry. To avoid confusing in this section, we denote the upper-half plane and its metric as

(7.1) R2
+ := {(x, y) ∈ R2 ; y > 0}, ds2 =

dx2 + dy2

y2
.

In this subsection, we shall explain the relationship between H2 ⊂ L3 and R2
+.

Lemma 7.5. If x = (x0, x1, x2)
T ∈ H3. Then x0 + x1 > 0 holds.

Proof. Since (x0)
2− (x1)

2 = 1+(x2)
2, we have (x0+x1)(x0−x1) > 0. So x0+x1 does not change

sign on H2 because H2 is connected, and it is positive at x = (1, 0, 0)T ∈ H2.

Let

(7.2) π : H2 3 (x0, x1, x2) 7−→
(

x2
x0 + x1

,
1

x0 + x1

)
∈ R2

+.

Lemma 7.6. The map π is diffeomorphism, and its inverse is expressed as

(7.3) π−1 : R+ 3 (x, y) 7−→
(
1 + x2 + y2

2y
,
1− x2 − y2

2y
,
x

y

)
.

Proof. Set (x, y) = (x2, 1)/(x0 + x1) for (x0, x1, x2)
T ∈ L2 and (x, y) ∈ R2

+. Then

x0 + x1 =
1

y
, x2 =

x

y
, (x0 − x1)(x0 + x1)− x22 = 1.

Hence we have the expression (7.3), and then π is a bijection.

Proposition 7.7. The diffeomorphism π : H2 → R2
+ is an isometry with respect to the metric on

H2 induced from the Lorentzian inner product, and the metric ds2 on R2
+ in (7.1).

Proof. Differentiating (x0, x1, x2) = π−1(x, y), we have

dx0 =

(
1 + x2 + y2

2y

)
dx+

(
−1− x2 + y2

2y

)
dy,

dx1 =

(
1− x2 − y2

2y

)
dx+

(
1− x2 − y2

2y

)
dy,

dx2 =
1

y
dx− x

y2
dy.
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Then the metric on H2 is expressed as

−dx20 + dx21 + dx22 =
dx2 + dy2

y2
= ds2.

This completes the proof.

Lemma 7.8. Let

σ(t) = σc,r(t) :=

{
(r tanh t+ c, r sech t) (0 < r <∞),

(c, et) (r = +∞),

where c ∈ R. Then
π−1 ◦ σ(t) = (cosh t)x+ (sinh t)v

for some x ∈ H2 and v ∈ UxH
2.

Proof. By direct computation, the conclusion follows by setting

x =

(
1 + c2 + r2

2r
,
−1 + c2 + r2

2r
,
c

r

)T

, v = (c,−c, 1)T

when 0 < r < +∞. When r = +∞, it is sufficient to set x = (1 + c2/2,−c2/2, c)T and v =
(−c2/2,−1 + c2/2,−c)T .

Shortest path

Let x ∈ H2 and v ∈ UxH
2, and set

(7.4) γx,v(t) := (cosh t)x+ (sinh t)v.

Since 〈x,x〉 = −1, 〈x,v〉 = 0, and 〈v,v〉 = 1, we have

Lemma 7.9. The curve γ := γx,v in (7.4) is a curve on H2 with γ(0) = x and γ′(0) = v.
Moreover, t is the arc-length parameter, that is, 〈γ′(t), γ′(t)〉 = 1.

Proposition 7.10. Let x and y be two distinct points in H2 . Then the shortest path joining x
and y is parametrized as γx,v(t), where

(7.5) v :=
y + 〈x,y〉x
|y + 〈x,y〉x|

,

which is the arc in Πx,y ∩H2, where Πx,y is the plane spanned by x and y.

Proof. First, the “straight line” on the upper-half plane (R2
+, ds

2) is the shortest path. Let P and
Q be two distinct points on R2

+. By a congruence as in Section 1, we may assume that P = (0, 1)
and Q = (0, q) where q > 0. Then by the same argument as in Problem 5-2 in Section 5, the
shortest path is the line segment on the y-axis. Since the corresponding path on H2 is in the
form γx,v by Lemma 7.8. Then by the same argument as Problem 6-2 in Section 6, we have the
conclusion.

Corollary 7.11. Let x and y be two distinct points on H2. Then the distance dist(x,y) of x and
y is

dist(x,y) = cosh−1(−〈x,y〉).
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Proof. First, if we set x = (x0, x1, x2)
T and y = (y0, y1, y2)

T ,

〈x,y〉 = −x0y0 + x1y1 + x2y2 = −
√

1 + x21 + x22

√
1 + y21 + y22 + x1y1 + x2y2

5 −
√
1 + x21 + x22

√
1 + y21 + y22 +

√
x21 + x22

√
y21 + y22 5 −1.

Then cosh−1(−〈x,y〉) is a real number. Since shortest path joining x and y is γx,v(t), where
γx,v(t0) = y for some t0 ∈ R:

y = (cosh t0)x+ (sinh t0)v.

Taking inner product with y, we have −1 = cosh(t0)x. Here, since t is the arc-length parameter,
t0 = dist(x,y). Thus we have the conclusion.

Example 7.12 (The hyperbolic Pythagorean theorem). Let x, y, z be three non-co-linear points
in H2, and ξ, η, γ the straight lines joining y and z, x and z, and x and y, respectively. If the
angle between η and ζ at x is right-angle, then

coshX = coshY coshZ, X = dist(y, z), Y = dist(x, z), Z = dist(x,y)

holds.
In fact, represent the arcs η and ζ by γx,v and γx,w, where

v :=
z + 〈x, z〉x
|z + 〈x, z〉x|

, w :=
y + 〈x,y〉x
|y + 〈x,y〉x|

.

By assumption, v and w are perpendicular, namely,

〈z + 〈x, z〉x,y + 〈x,y〉x〉 = 0.

Hence −〈y, z〉 = 〈x,y〉 〈x, z〉, and we have the conclusion by Corollary 7.11.

Various models of the hyperbolic plane

Poincaré disc model: Let

(7.6) πP : H2 3 (x0, x1, x2)
T 7→ 1 + x0

(
x1, x2) 3 D := {(u, v) ∈ R2 ; u2 + v2 < 1},

which is called the stereographic projection. The inverse of πP is written as

π−1
P (u, v) =

(
1 + u2 + v2

1− u2 − v2
,

2u

1− u2 − v2
,

2v

1− u2 − v2

)
.

The metric on D induced from H2 is computed as

ds2P :=
4

(1− u2 − v2)2
(du2 + dv2).

The model (D, ds2P ) is called the Poincaré disc model of the hyperbolic plane.

Klein model: Let

(7.7) πC : H2 3 (x0, x1, x2)
T 7→

(
x1
x0
,
x2
x0

)
3 D := {(ξ, η) ∈ R2 ; ξ2 + η2 < 1},

which is called the central projection. The inverse and the induced metric ds2C is represented as

π−1
C (ξ, η) =

1√
1− ξ2 − η2

(1, ξ, η)T , ds2C =
1

(1− ξ2 − η2)

(
(1−η2) dξ2+2ξη dξ dη+(1−ξ2) dη2

)
.

The model (D, ds2C) is called the Klein model or the projective model, in which a “straight line” is
a line segment of D ⊂ R2.


