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7 Models of non-Euclidean geometry
In this section, we treat the 2-dimensional hyperbolic space H? for the sake of simplicity:
H? .= {x = (z0,21,22)T € L?; (x,2) = —1,2¢ > 0}.

Almost all discussions here work for general dimensional case. Throughout this section, we denote
the canonical basis of L3(= R3) by

€ = (170a0)T7 €1 = (07 laO)T7 €2 = (0,0, l)T

Isometries

Recall that

0(2,1):={AecM3(R); ATYA =Y}, where Y =

OO =
o = O
= o O

is the set of linear isometry of L3(= R3) preserving the Lorentz inner product. The connected
component of O(2,1) containing the identity matrix is

SO, (3, 1) = {A = (aij)i,j:()’LQ € O(Q, 1); det A =1,aq9 > 0}
Lemma 7.1. Let A € SO, (2,1). Then A~' =Y ATY. In particular, AT € SO, (2,1).

Proof. Let A = (a;;) € SO4(2,1). Since Y2 =id, YATY A = id. Hence A~ = YATY, and then
AYATY = AA~! =id. O

Lemma 7.2. The liner action of SO4(3,1) on L?® preserves H?2.

Proof. Let A = (a;;) € SO4(2,1) and & = (0,71, 72)T € H?. Since it preserves the inner product,
(Az, Az) = (z,x) = —1 for all x € H2. Then it is sufficient to show the first component of Az is
positive. Here , AY AT =Y holds by Lemma 7.1. By the top-left component of this identity and
the definition of H?, we have

—(a00)?® + (ao1)® + (ap2)®> = =1, —(z0)® + (x1)* + (2)®> = =1, ago >0, and z(> 0.

So, the first component of Ax is computed as

agozo + ao1z1 + agers = v/(ao1)? + (ag2)? + 1y/(21)? + (v22)% + 1 + ag1z1 + agazs
> /(a01)2 + (a02)2v/(21)? + (222)2 + ap1x1 + agaas 2 0.

Here, the final inequality comes from the Cauchy-Schwarz inequality. This completes the proof. [
Lemma 7.3. The action of SO, (2,1) on L3 is isometric.

Proof. Let f: H> > x v Ax € H?, where A € SO, (2,1). Take z € H? and v € T, H? = z*.
Then there exists a curve v(¢) on H? such that y(0) = = and 7/(0) = v, where ' = d/dt. Then
df (v) = (f o) (0) = (Ay(t))'|s=0 = AY'(0) = Av. In other words, the differential dfy: TxH? —
TxH? is the liner action of the matrix A on T H? C L3. Since A preserves the Lorentz inner
product, f is an isometry. O

Lemma 7.4. The group SO, (2,1) acts transitively on the unit tangent bundle UH? of H?, where

UH? = | J UgH?,  UgpH?:={ve€TH*; (v,v) =1}
TcH?
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Proof. The isometry f as in the proof of Lemma 7.3 induces the map f,: TH? — TH? as
fo: TH?> Svr—df(v) = Av € TH?, v e TpH? df(v)€ Ty H* =TazH?

Since the linear action of A preserves the Lorentz inner product, f, induces the map UH? — U H?2.

Takexz € H?> and v € UgH? and Let ag = ¢, a; = v and a3 = Y (& xv), where “x” denotes the
vector product of the vectors of Euclidean space R3. Then (a;,a;) = 0if i # j, (ag,a¢) = —1, and
(aj,a;) =1(j =1,2). Sowehave A := (ap, a1, az) € O(2,1). Moreover, the top-left component of
A is the first component of &, which is positive, and det A = as2-(agxa1) = az-Yas = (aq,as) =1,
where “-” is the Euclidean inner product. Thus, we have A € SO4(2,1).

By definition, the liner transformation by the matrix A maps ey to ag = x, and e; to a; = v.
Since the pair (x, v) is taken arbitrarily, the conclusion follows O

Hyperbolic plane and the upper-half plane

We have used the symbol H in Section 1 for the upper-half space as a model of non-Euclidean
geometry. To avoid confusing in this section, we denote the upper-half plane and its metric as

dz? + dy?
(7.1) R% = {(z,y) € R?; y > 0}, ds® = %
In this subsection, we shall explain the relationship between H? C L3 and ]Rf_.
Lemma 7.5. If © = (vg,x1,22)" € H®. Then xg + x1 > 0 holds.

Proof. Since (z0)? — (z1)? = 1+ (22)?, we have (xg+x1)(zg —x1) > 0. So x¢+ x1 does not change

sign on H? because H? is connected, and it is positive at = = (1,0,0)T € H2. O
Let

(7.2) 7 H? 3 (wg, 1, 02) — 2 ! cR?
. : 051,22 7o+ 21’ To + 71 T

Lemma 7.6. The map 7 is diffeomorphism, and its inverse is expressed as

B 1+x2+y2 17x27y2 T
. LR — .
(7 3) ™ + 2 (x,y)»—> 2y ) 2y 5y

Proof. Set (z,y) = (22,1)/(zo + x1) for (zo,z1,22)" € L? and (z,y) € R2. Then

| =
8

To+ 11 = —, .TQZQ, (:Eofxl)(onr:Bl)fxg:l.

SRS

Hence we have the expression (7.3), and then 7 is a bijection. O

Proposition 7.7. The diffeomorphism m: H?> — Ri is an isometry with respect to the metric on
H? induced from the Lorentzian inner product, and the metric ds® on Rﬁ_ in (7.1).

Proof. Differentiating (z¢, 21, 72) = 7 1(x,%), we have

1 2 2 —1— 2 2
dm0<+x +y)dz+<x er)dy,
2y 2y

1— 22 o2 1— 22— o2
dr, = (m y ) dr + (x y ) dy,
2y 2y

z dy.

1
dro = —dx — 5
Y Y
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Then the metric on H? is expressed as

dx? + dy?
—dx? + da? + da3 = LQQ = ds®.
Y
This completes the proof. O
Lemma 7.8. Let
(1) = oun(t) = (rtanht + ¢, rsecht) (0 <r <o),
’ (c,e') (r = +00),

where ¢ € R. Then
7t oo(t) = (cosht)x + (sinht)v

for some x € H? and v € UpH?.

Proof. By direct computation, the conclusion follows by setting

1 2 2 _q 2 2 T
wz( retr redr C) , v=(c,—c,1)T

2r ’ 2r Ty
when 0 < 7 < 4+00. When r = +oo, it is sufficient to set = (1 + ¢%/2,—c?/2,¢)T and v =
(—c?/2,—1+c%/2,—c)T. O

Shortest path

Let ¢ € H? and v € Uz H?, and set
(7.4) Ya,v(t) := (cosht)x + (sinht)v.
Since (x,x) = —1, (x,v) =0, and (v,v) = 1, we have

Lemma 7.9. The curve v := Vg in (7.4) is a curve on H? with v(0) = x and +/(0) = v.
Moreover, t is the arc-length parameter, that is, {('(t),~'(t)) = 1.

Proposition 7.10. Let x and y be two distinct points in H? . Then the shortest path joining «
and y is parametrized as Vg »(t), where

_y+(ry
(7:5) VS g (el

which is the arc in g 4 N H?, where Iz 4 is the plane spanned by © and y.

Proof. First, the “straight line” on the upper-half plane (Ri, ds?) is the shortest path. Let P and
Q be two distinct points on Ri. By a congruence as in Section 1, we may assume that P = (0, 1)
and Q = (0,q) where ¢ > 0. Then by the same argument as in Problem 5-2 in Section 5, the
shortest path is the line segment on the y-axis. Since the corresponding path on H? is in the
form vz by Lemma 7.8. Then by the same argument as Problem 6-2 in Section 6, we have the
conclusion. O

Corollary 7.11. Let & and y be two distinct points on H?. Then the distance dist(x,y) of  and
Y s
dist(z, y) = cosh™' (= (z, y)).
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Proof. First, if we set & = (xq, 71, 22)T and y = (yo, y1,y2)7,

(,y) = —xoyo + T1Y1 + Tay2 = —\/1 + o3 +$§\/1 +yi + 3+ z1y1 + 22y2

—\/1+x§+x§\/1+y%+y§+ x§+x§\/y§+y§ < -1

A

Then cosh™ (— (z,y)) is a real number. Since shortest path joining = and y is Ya,v(t), where
~Yz,v(to) = y for some ¢y € R:
y = (coshtp)x + (sinhtp)v.

Taking inner product with y, we have —1 = cosh(tg)x. Here, since ¢t is the arc-length parameter,
to = dist(x, y). Thus we have the conclusion. O

Example 7.12 (The hyperbolic Pythagorean theorem). Let x, y, z be three non-co-linear points
in H?, and £, 0, v the straight lines joining y and z, & and z, and = and y, respectively. If the
angle between 1 and ( at x is right-angle, then

cosh X = coshY cosh Z, X =dist(y, z), Y =dist(x,2z), Z =dist(x,y)

holds.
In fact, represent the arcs n and ¢ by Vg » and vg ., where

L ztmaHe yi@y)e
Lzt @zl 0yt (ry) el
By assumption, v and w are perpendicular, namely,
(z+ (z,z) @,y + (z,y)x) = 0.

Hence — (y, z) = (x,y) (x, z), and we have the conclusion by Corollary 7.11.

Various models of the hyperbolic plane

Poincaré disc model: Let

1
(7.6) mp: H? 3 (zg,21,72)" ﬂml,xg) > D= {(u,v) € R?; u® +0? < 1},

(

which is called the stereographic projection. The inverse of wp is written as

1 _ 1+ u? + v? 2u 2v
e (u,v) = 1—wu?2—02"1—u2—0v2"1—u2—02)"

The metric on D induced from H? is computed as

4

ds? = ——
Sp 1—u? —v2)2(

du® + dv?).
The model (D, ds%) is called the Poincaré disc model of the hyperbolic plane.

Klein model: Let

(L) mes B3 (s, ma)! o (f f) 5 D= {(&n) €R* € 477 <1},
0 Zo
which is called the central projection. The inverse and the induced metric ds?, is represented as
1 1
-1 T 2 2\ 7¢2 2\ 72
m ,n) = ———=(1,¢&, , dst, = —————((1—n*) d€°4+2&n dE dn+(1—-£7) dn”).
0(577) 1_52_’02( 577) C (1_52_772)(( 77)5 577577 ( 5)77)

The model (D, ds?) is called the Klein model or the projective model, in which a “straight line” is
a line segment of D C R2.



